Download
11548_2024_Article_3076.pdf 1,86MB
WeightNameValue
1000 Titel
  • Automatic image registration on intraoperative CBCT compared to Surface Matching registration on preoperative CT for spinal navigation: accuracy and workflow
1000 Autor/in
  1. Frisk, Henrik |
  2. Burström, Gustav |
  3. Persson, Oscar |
  4. El-Hajj, Victor Gabriel |
  5. Coronado, Luisa |
  6. Hager, Susanne |
  7. Edström, Erik |
  8. Elmi-Terander, Adrian |
1000 Verlag
  • Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-20
1000 Erschienen in
1000 Quellenangabe
  • 19(4):665-675
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03076-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973038/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Introduction</jats:title> <jats:p>Spinal navigation solutions have been slower to develop compared to cranial ones. To facilitate greater adoption and use of spinal navigation, the relatively cumbersome registration processes need to be improved upon. This study aims to validate a new solution for automatic image registration and compare it to a traditional Surface Matching method.</jats:p> </jats:sec><jats:sec> <jats:title>Method</jats:title> <jats:p>Adult patients undergoing spinal surgery requiring navigation were enrolled after providing consent. A registration matrix—Universal AIR (= Automatic Image Registration)—was placed in the surgical field and used for automatic registration based on intraoperative 3D imaging. A standard Surface Matching method was used for comparison. Accuracy measurements were obtained by comparing planned and acquired coordinates on the vertebrae.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Thirty-nine patients with 42 datasets were included. The mean accuracy of Universal AIR registration was 1.20 ± 0.42 mm, while the mean accuracy of Surface Matching registration was 1.94 ± 0.64 mm. Universal AIR registration was non-inferior to Surface Matching registration. Post hoc analysis showed a significantly greater accuracy for Universal AIR registration. In Surface Matching, but not automatic registration, user-related errors such as incorrect identification of the vertebral level were seen.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Automatic image registration for spinal navigation using Universal AIR and intraoperative 3D imaging provided improved accuracy compared to Surface Matching registration. In addition, it minimizes user errors and offers a standardized workflow, making it a reliable registration method for navigated spinal procedures.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Spine/diagnostic imaging [MeSH]
lokal Spiral Cone-Beam Computed Tomography [MeSH]
lokal Workflow [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Patient tracking
lokal Surgery, Computer-Assisted/methods [MeSH]
lokal Neurosurgical Procedures [MeSH]
lokal Original Article
lokal Surface Matching
lokal Reference frame
lokal CBCT
lokal Surgical navigation
lokal Spine/surgery [MeSH]
lokal Spine surgery
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-7317-1554|https://frl.publisso.de/adhoc/uri/QnVyc3Ryw7ZtLCBHdXN0YXY=|https://frl.publisso.de/adhoc/uri/UGVyc3NvbiwgT3NjYXI=|https://frl.publisso.de/adhoc/uri/RWwtSGFqaiwgVmljdG9yIEdhYnJpZWw=|https://frl.publisso.de/adhoc/uri/Q29yb25hZG8sIEx1aXNh|https://frl.publisso.de/adhoc/uri/SGFnZXIsIFN1c2FubmU=|https://frl.publisso.de/adhoc/uri/RWRzdHLDtm0sIEVyaWs=|https://frl.publisso.de/adhoc/uri/RWxtaS1UZXJhbmRlciwgQWRyaWFu
1000 Hinweis
  • DeepGreen-ID: a9afed08e9a04df7b0406c527adadd31 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Karolinska Institutet |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Karolinska Institutet |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524468.rdf
1000 Erstellt am 2025-07-07T04:38:19.682+0200
1000 Erstellt von 322
1000 beschreibt frl:6524468
1000 Zuletzt bearbeitet 2025-07-29T16:55:39.362+0200
1000 Objekt bearb. Tue Jul 29 16:55:39 CEST 2025
1000 Vgl. frl:6524468
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524468 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source