Download
00330_2023_Article_10234.pdf 2,75MB
WeightNameValue
1000 Titel
  • Evaluation of simultaneous multi-slice acquisition with advanced processing for free-breathing diffusion-weighted imaging in patients with liver metastasis
1000 Autor/in
  1. Rata, Mihaela |
  2. De Paepe, Katja N. |
  3. Orton, Matthew R. |
  4. Castagnoli, Francesca |
  5. d’Arcy, James |
  6. Winfield, Jessica M. |
  7. Hughes, Julie |
  8. Stemmer, Alto |
  9. Nickel, Marcel Dominik |
  10. Koh, Dow-Mu |
1000 Verlag
  • Springer Berlin Heidelberg
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-09-30
1000 Erschienen in
1000 Quellenangabe
  • 34(4):2457-2467
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-023-10234-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957610/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Objectives</jats:title> <jats:p>Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) acquisition and advanced processing can accelerate acquisition time and improve MR image quality. This study evaluated the image quality and apparent diffusion coefficient (ADC) measurements of free-breathing DWI acquired from patients with liver metastases using a prototype SMS-DWI acquisition (with/without an advanced processing option) and conventional DWI.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Four DWI schemes were compared in a pilot 5-patient cohort; three DWI schemes were further assessed in a 24-patient cohort. Two readers scored image quality of all <jats:italic>b</jats:italic>-value images and ADC maps across the three methods. ADC measurements were performed, for all three methods, in left and right liver parenchyma, spleen, and liver metastases. The Friedman non-parametric test (post-hoc Wilcoxon test with Bonferroni correction) was used to compare image quality scoring; <jats:italic>t</jats:italic>-test was used for ADC comparisons.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>SMS-DWI was faster (by 24%) than conventional DWI. Both readers scored the SMS-DWI with advanced processing as having the best image quality for highest <jats:italic>b</jats:italic>-value images (b750) and ADC maps; Cohen’s kappa inter-reader agreement was 0.6 for b750 image and 0.56 for ADC maps. The prototype SMS-DWI sequence with advanced processing allowed a better visualization of the left lobe of the liver. ADC measured in liver parenchyma, spleen, and liver metastases using the SMS-DWI with advanced processing option showed lower values than those derived from the SMS-DWI method alone (<jats:italic>t</jats:italic>-test, <jats:italic>p</jats:italic> &lt; 0.0001; <jats:italic>p</jats:italic> &lt; 0.0001; <jats:italic>p</jats:italic> = 0.002).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Free-breathing SMS-DWI with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients.</jats:p> </jats:sec><jats:sec> <jats:title>Clinical relevance statement</jats:title> <jats:p>Free-breathing simultaneous multi-slice- diffusion-weighted imaging (DWI) with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients.</jats:p> </jats:sec><jats:sec> <jats:title>Key Points</jats:title> <jats:p><jats:italic>• Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) can accelerate acquisition time and improve image quality.</jats:italic></jats:p> <jats:p><jats:italic>• Apparent diffusion coefficients (ADC) measured in liver parenchyma, spleen, and liver metastases using the simultaneous multi-slice DWI with advanced processing were significantly lower than those derived from the simultaneous multi-slice DWI method alone.</jats:italic></jats:p> <jats:p><jats:italic>• Simultaneous multi-slice DWI sequence with inline advanced processing was faster and demonstrated better image quality in liver patients.</jats:italic></jats:p> </jats:sec>
1000 Sacherschließung
lokal Liver
lokal Respiration [MeSH]
lokal Reproducibility of Results [MeSH]
lokal Liver Neoplasms/diagnostic imaging [MeSH]
lokal Diffusion Magnetic Resonance Imaging/methods [MeSH]
lokal Humans [MeSH]
lokal Metastasis
lokal Magnetic Resonance
lokal Simultaneous multi-slice acquisition
lokal Patients
lokal Diffusion MRI
lokal Echo-Planar Imaging/methods [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-4999-8038|https://frl.publisso.de/adhoc/uri/RGUgUGFlcGUsIEthdGphIE4u|https://frl.publisso.de/adhoc/uri/T3J0b24sIE1hdHRoZXcgUi4=|https://frl.publisso.de/adhoc/uri/Q2FzdGFnbm9saSwgRnJhbmNlc2Nh|https://frl.publisso.de/adhoc/uri/ZOKAmUFyY3ksIEphbWVz|https://frl.publisso.de/adhoc/uri/V2luZmllbGQsIEplc3NpY2EgTS4=|https://frl.publisso.de/adhoc/uri/SHVnaGVzLCBKdWxpZQ==|https://frl.publisso.de/adhoc/uri/U3RlbW1lciwgQWx0bw==|https://frl.publisso.de/adhoc/uri/Tmlja2VsLCBNYXJjZWwgRG9taW5paw==|https://frl.publisso.de/adhoc/uri/S29oLCBEb3ctTXU=
1000 Hinweis
  • DeepGreen-ID: 8f76814322ca4f609fd871aa519a5d1b ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524762.rdf
1000 Erstellt am 2025-07-07T06:33:08.052+0200
1000 Erstellt von 322
1000 beschreibt frl:6524762
1000 Zuletzt bearbeitet 2025-07-30T10:46:39.574+0200
1000 Objekt bearb. Wed Jul 30 10:46:39 CEST 2025
1000 Vgl. frl:6524762
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524762 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source