Download
13054_2024_Article_5023.pdf 2,60MB
WeightNameValue
1000 Titel
  • A proof of concept for microcirculation monitoring using machine learning based hyperspectral imaging in critically ill patients: a monocentric observational study
1000 Autor/in
  1. Kohnke, Judith |
  2. Pattberg, Kevin |
  3. Nensa, Felix |
  4. Kuhlmann, Henning |
  5. Brenner, Thorsten |
  6. Schmidt, Karsten |
  7. Hosch, René |
  8. Espeter, Florian |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-10
1000 Erschienen in
1000 Quellenangabe
  • 28(1):230
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13054-024-05023-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238485/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Impaired microcirculation is a cornerstone of sepsis development and leads to reduced tissue oxygenation, influenced by fluid and catecholamine administration during treatment. Hyperspectral imaging (HSI) is a non-invasive bedside technology for visualizing physicochemical tissue characteristics. Machine learning (ML) for skin HSI might offer an automated approach for bedside microcirculation assessment, providing an individualized tissue fingerprint of critically ill patients in intensive care. The study aimed to determine if machine learning could be utilized to automatically identify regions of interest (ROIs) in the hand, thereby distinguishing between healthy individuals and critically ill patients with sepsis using HSI.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>HSI raw data from 75 critically ill sepsis patients and from 30 healthy controls were recorded using TIVITA® Tissue System and analyzed using an automated ML approach. Additionally, patients were divided into two groups based on their SOFA scores for further subanalysis: less severely ill (SOFA ≤ 5) and severely ill (SOFA &gt; 5). The analysis of the HSI raw data was fully-automated using MediaPipe for ROI detection (palm and fingertips) and feature extraction. HSI Features were statistically analyzed to highlight relevant wavelength combinations using Mann–Whitney-U test and Benjamini, Krieger, and Yekutieli (BKY) correction. In addition, Random Forest models were trained using bootstrapping, and feature importances were determined to gain insights regarding the wavelength importance for a model decision.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>An automated pipeline for generating ROIs and HSI feature extraction was successfully established. HSI raw data analysis accurately distinguished healthy controls from sepsis patients. Wavelengths at the fingertips differed in the ranges of 575–695 nm and 840–1000 nm. For the palm, significant differences were observed in the range of 925–1000 nm. Feature importance plots indicated relevant information in the same wavelength ranges. Combining palm and fingertip analysis provided the highest reliability, with an AUC of 0.92 to distinguish between sepsis patients and healthy controls.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Based on this proof of concept, the integration of automated and standardized ROIs along with automated skin HSI analyzes, was able to differentiate between healthy individuals and patients with sepsis. This approach offers a reliable and objective assessment of skin microcirculation, facilitating the rapid identification of critically ill patients.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Female [MeSH]
lokal Monitoring, Physiologic/instrumentation [MeSH]
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Middle Aged [MeSH]
lokal Microcirculation/physiology [MeSH]
lokal Sepsis/physiopathology [MeSH]
lokal Critical Illness [MeSH]
lokal Male [MeSH]
lokal Sepsis/diagnosis [MeSH]
lokal Research
lokal Monitoring, Physiologic/methods [MeSH]
lokal Hyperspectral Imaging/methods [MeSH]
lokal Machine Learning/standards [MeSH]
lokal Proof of Concept Study [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S29obmtlLCBKdWRpdGg=|https://frl.publisso.de/adhoc/uri/UGF0dGJlcmcsIEtldmlu|https://frl.publisso.de/adhoc/uri/TmVuc2EsIEZlbGl4|https://frl.publisso.de/adhoc/uri/S3VobG1hbm4sIEhlbm5pbmc=|https://frl.publisso.de/adhoc/uri/QnJlbm5lciwgVGhvcnN0ZW4=|https://frl.publisso.de/adhoc/uri/U2NobWlkdCwgS2Fyc3Rlbg==|https://frl.publisso.de/adhoc/uri/SG9zY2gsIFJlbsOp|https://frl.publisso.de/adhoc/uri/RXNwZXRlciwgRmxvcmlhbg==
1000 Hinweis
  • DeepGreen-ID: b26b74963f264ab4ab7f60af78a35592 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Stiftung Universitätsmedizin Essen |
  2. Universität Duisburg-Essen |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Stiftung Universitätsmedizin Essen |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universität Duisburg-Essen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6524782.rdf
1000 Erstellt am 2025-07-07T06:40:39.125+0200
1000 Erstellt von 322
1000 beschreibt frl:6524782
1000 Zuletzt bearbeitet 2025-07-30T07:59:24.001+0200
1000 Objekt bearb. Wed Jul 30 07:59:24 CEST 2025
1000 Vgl. frl:6524782
1000 Oai Id
  1. oai:frl.publisso.de:frl:6524782 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source