Download
dyae113.pdf 591,32KB
WeightNameValue
1000 Titel
  • Software application profile: tpc and micd-R packages for causal discovery with incomplete cohort data
1000 Autor/in
  1. Andrews, Ryan |
  2. Bang, Christine W. |
  3. Didelez, Vanessa |
  4. Lüschen, Janine |
  5. Foraita, Ronja |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-26
1000 Erschienen in
1000 Quellenangabe
  • 53(5):dyae113
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Verlagsversion
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346914 |
  • https://doi.org/10.1093/ije/dyae113 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • MOTIVATION: The Peter Clark (PC) algorithm is a popular causal discovery method to learn causal graphs in a data-driven way. Until recently, existing PC algorithm implementations in R had important limitations regarding missing values, temporal structure or mixed measurement scales (categorical/continuous), which are all common features of cohort data. The new R packages presented here, micd and tpc, fill these gaps. IMPLEMENTATION: micd and tpc packages are R packages. GENERAL FEATURES: The micd package provides add-on functionality for dealing with missing values to the existing pcalg R package, including methods for multiple imputations relying on the Missing At Random assumption. Also, micd allows for mixed measurement scales assuming conditional Gaussianity. The tpc package efficiently exploits temporal information in a way that results in a more informative output that is less prone to statistical errors. AVAILABILITY: The tpc and micd packages are freely available on the Comprehensive R Archive Network (CRAN). Their source code is also available on GitHub (https://github.com/bips-hb/micd; https://github.com/bips-hb/tpc).
1000 Sacherschließung
lokal Cohort studies
lokal Missing data
lokal R
lokal Longitudinal data
lokal Causal discovery
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7750-2397|https://frl.publisso.de/adhoc/uri/QmFuZywgQ2hyaXN0aW5lIFcu|https://orcid.org/0000-0001-8587-7706|https://orcid.org/0000-0003-0346-2633|https://orcid.org/0000-0003-2216-6653
1000 Label
1000 Förderer
  1. National Institutes of Health |
  2. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. P30AG072978; R01AG065359
  2. -
1000 Förderprogramm
  1. -
  2. 281474342; 459360854; 389238860; 329551904
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Institutes of Health |
    1000 Förderprogramm -
    1000 Fördernummer P30AG072978; R01AG065359
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm 281474342; 459360854; 389238860; 329551904
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6525266.rdf
1000 Erstellt am 2025-08-06T10:59:13.154+0200
1000 Erstellt von 266
1000 beschreibt frl:6525266
1000 Bearbeitet von 355
1000 Zuletzt bearbeitet 2025-09-12T15:12:52.082+0200
1000 Objekt bearb. Tue Aug 26 10:33:19 CEST 2025
1000 Vgl. frl:6525266
1000 Oai Id
  1. oai:frl.publisso.de:frl:6525266 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source