Download
jcm-09-00571-v2.pdf 1,21MB
WeightNameValue
1000 Titel
  • Risk Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China
1000 Autor/in
  1. Boldog, Péter |
  2. Tekeli, Tamás |
  3. Vizi, Zsolt |
  4. Dénes, Attila |
  5. Bartha, Ferenc |
  6. Röst, Gergely |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-02-19
1000 Erschienen in
1000 Quellenangabe
  • 9(2):571
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/jcm9020571 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number Rloc ). We found that in countries with low connectivity to China but with relatively high Rloc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low Rloc benefit the most from policies that further reduce Rloc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal travel
lokal interventions
lokal risk assessment
lokal compartmental model
lokal novel coronavirus
lokal branching process
lokal transmission
lokal outbreak
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Qm9sZG9nLCBQw6l0ZXIg|https://frl.publisso.de/adhoc/uri/VGVrZWxpLCBUYW3DoXM=|https://frl.publisso.de/adhoc/uri/Vml6aSwgWnNvbHQ=|https://orcid.org/0000-0003-1827-7932|https://orcid.org/0000-0002-7545-9145|https://orcid.org/0000-0001-9476-3284
1000 Label
1000 Förderer
  1. European Commission |
  2. Nemzeti Kutatási Fejlesztési és Innovációs Hivatal |
  3. Magyar Tudományos Akadémia |
  4. Emberi Eroforrások Minisztériuma |
1000 Fördernummer
  1. EFOP-3.6.1-16-2016-00008
  2. KKP 129877; FK 124016; PD 128363
  3. -
  4. 20391-3/2018/FEKUSTRAT
1000 Förderprogramm
  1. Hungarian grant
  2. János Bolyai Research Scholarship
  3. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6420363.rdf
1000 Erstellt am 2020-04-23T09:16:41.534+0200
1000 Erstellt von 21
1000 beschreibt frl:6420363
1000 Bearbeitet von 21
1000 Zuletzt bearbeitet 2020-04-23T09:18:21.402+0200
1000 Objekt bearb. Thu Apr 23 09:17:48 CEST 2020
1000 Vgl. frl:6420363
1000 Oai Id
  1. oai:frl.publisso.de:frl:6420363 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source