Download
document (26).pdf 696,73KB
WeightNameValue
1000 Titel
  • Application Of Ki-67 Analysis In A Distributed Computing Infrastructure : PS02.07 | ePoster Session II
1000 Autor/in
  1. Strutz, Marco |
  2. Lindequist, B. |
  3. Witt, M. |
  4. Heßling, H. |
  5. Hufnagl, P. |
  6. Krefting, D. |
1000 Erscheinungsjahr 2016
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2016-06-08
1000 Erschienen in
1000 Quellenangabe
  • 1(8):135
1000 Übergeordneter Kongress
1000 Copyrightjahr
  • 2016
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:135 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • INTRODUCTION / BACKGROUND: Over the last few years, the protein Ki-67 [1] has been established as one of the most important biomarkers for cell proliferation in breast cancer. High Ki-67 values indicate high tumor growth and have direct impact on the patient’s treatment. Several automated image anal- ysis methods for identifying Ki-67-positive and negative tumor cells have been presented. AIMS: For small regions of a virtual slide, the Ki-67 analysis can be realized within an acceptable period of time. However, to analyse an entire whole slide image (WSI [2])most of the current methods are not sufficient yet. On a typical office computer, the processing time of 3,752 tiles, which were extracted from a H–DAB stained WSI, exceeded 24 hours. Therefore, we propose an approach to significantly speed up the process of analysing entire WSIs by using a distributed computing infrastructure. METHODS: To evaluate the approach, an unmodified and validated [3] [4] analysis software for Ki-67 was deployed on a six node setup supporting two different software engines: Hadoop Streaming [5] and Apache Spark [6] . Both tools support the MapReduce methodology whereas Apache Spark offers alternative programing models. In addition, heat maps visualizing the Ki-67 scores for an entire slide were generated which can provide additional informa- tion for clinical research. RESULTS: First results on automated and reproducible tests have been produced. By processing 3,752 tiles the speedup turned out to increase linearly with the number of tiles. The overall processing time was improved by a factor of 10, more precisely from 28 hours on a typical office computer to three hours on a distributed environment. Further optimization strategies besides WSI partitioning will be considered. To achieve additional improvements in processing speed, the underlying algorithm of a Ki-67 analysis can be examined with focus on how to adapt it towards distributed processing workflows.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U3RydXR6LCBNYXJjbw==|https://frl.publisso.de/adhoc/uri/TGluZGVxdWlzdCwgQi4=|https://frl.publisso.de/adhoc/uri/V2l0dCwgTS4=|https://frl.publisso.de/adhoc/uri/SGXDn2xpbmcsIEgu|https://frl.publisso.de/adhoc/uri/SHVmbmFnbCwgUC4=|https://frl.publisso.de/adhoc/uri/S3JlZnRpbmcsIEQu
1000 Label
1000 Förderer
  1. Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6431988.rdf
1000 Erstellt am 2022-03-04T17:50:40.729+0100
1000 Erstellt von 218
1000 beschreibt frl:6431988
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2022-08-18T13:06:36.810+0200
1000 Objekt bearb. Thu Aug 18 12:44:47 CEST 2022
1000 Vgl. frl:6431988
1000 Oai Id
  1. oai:frl.publisso.de:frl:6431988 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source