Download
document (32).pdf 454,86KB
WeightNameValue
1000 Titel
  • Computational Topology Based Quantification Of Hepatocytes Nuclei In Lipopolysaccharide-Induced Liver Injury In Mice
1000 Autor/in
  1. Rojas Moraleda, Rodrigo |
  2. Xiong, W. |
  3. Valous, N. |
  4. Salinas, L. |
  5. Breitkopf-Heinlein, K. |
  6. Dooley, S. |
  7. Zoernig, I. |
  8. Heermann, D. W. |
  9. Jäger, D. |
1000 Erscheinungsjahr 2016
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2016-06-08
1000 Erschienen in
1000 Quellenangabe
  • 1(8):143
1000 Übergeordneter Kongress
1000 Copyrightjahr
  • 2016
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:143 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • INTRODUCTION / BACKGROUND: Automated high resolution scanning microscopes digitize large sets of histological samples and access the an anatomical features of cells and tissues from the mm range down to a resolution of .25mpp microns per pixel). The high quality of the scans allows for the collection of the quantitative morphotopological features of cells and tissues from different samples, which can be coupled to functional information through, e.g., concomitant immunostaining. The basis for robust and accurate quantification of structural and functional features is the segmentation of regions of interest (ROIs) which define different elements within the scans. Due to acquisition artifacts and the diversity and variance of possible tar- gets, the characterization and segmentation of ROIs in histological samples is difficult and challenging. In recent years, computational algebraic topology, a field of mathematics, has established a robust and versatile way to obtain qualitative information from data. The most fundamental qualitative description of an object is given by the study of its topology, how the object is connected, how many holes it has, and of what type. That allows characterizing data sets according to their structure, increasing our understanding of their properties. AIMS: We propose a method for the robust segmentation of hepatocyte nuclei based on the principles of persistent homology, a tool of algebraic topology. We show the application of our technique in histopathological, whole slide images obtained from liver sections of lipopolysaccharide (LPS)-treated mice. The robustness is achieved by the introduction of persistent homology to characterize the hepatocyte nuclei. Its stability proves the usefulness of persistent homology; variations in the properties of the ROIs induce small changes in the resulting characterization. By means of this representation for the hepatocyte nuclei, the resulting segmentation is less sensitive to acquisition artifacts and natural variations of the images across batches of slides. METHODS: The sample space of this study consists of 856 cropped images of 616x616 pixels each, obtained from three specimens. Each image was fragmented into connected components at different scales. Persistent homology is used to study the inclusion relations between connected components. The outcome of such process is a persistence diagram that provides a low-dimensional projection of the image structure. From that representation, it is possible to use conventional statistical methods for segmenting hepatocyte nuclei. After the segmentation, we assess the performance in comparison to a gold standard segmentation validated by experts. RESULTS: The computational topology approach proposed successfully detected hepatocyte cells under several natural variations. We evaluated on a per-pixel basis how the segmentation performs on: i) all nuclei in the images, ii) big round nuclei considered belonging to hepatocytes cells (accuracy 87.2%, recall 80.3%), and iii) nuclei regarded to non-parenchymal cells.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Um9qYXMgTW9yYWxlZGEsIFJvZHJpZ28=|https://frl.publisso.de/adhoc/uri/WGlvbmcsIFcu|https://frl.publisso.de/adhoc/uri/VmFsb3VzLCBOLg==|https://frl.publisso.de/adhoc/uri/U2FsaW5hcywgTC4=|https://frl.publisso.de/adhoc/uri/QnJlaXRrb3BmLUhlaW5sZWluLCBLLg==|https://frl.publisso.de/adhoc/uri/RG9vbGV5LCBTLg==|https://frl.publisso.de/adhoc/uri/Wm9lcm5pZywgSS4=|https://frl.publisso.de/adhoc/uri/SGVlcm1hbm4sIEQuIFcu|https://frl.publisso.de/adhoc/uri/SsOkZ2VyLCBELg==
1000 Label
1000 Förderer
  1. Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6432147.rdf
1000 Erstellt am 2022-03-11T17:49:13.557+0100
1000 Erstellt von 218
1000 beschreibt frl:6432147
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2022-08-18T13:07:16.853+0200
1000 Objekt bearb. Thu May 12 18:53:47 CEST 2022
1000 Vgl. frl:6432147
1000 Oai Id
  1. oai:frl.publisso.de:frl:6432147 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source