Download
s00103-020-03147-2.pdf 296,65KB
WeightNameValue
1000 Titel
  • Digitale Daten für eine effizientere Prävention: Ethische und rechtliche Überlegungen zu Potenzialen und Risiken
1000 Titelzusatz
  • Digital data for more efficient prevention: ethical and legal considerations regarding potentials and risks
1000 Autor/in
  1. Friele, Minou |
  2. Bröckerhoff, Peter |
  3. Fröhlich, Wiebke |
  4. Spiecker genannt Döhmann, Indra |
  5. Woopen, Christiane |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-14
1000 Erschienen in
1000 Quellenangabe
  • 63(6):741-748
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00103-020-03147-2 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Digitization offers considerable potential for strengthening prevention in the healthcare system. Data from various clinical and nonclinical sources can be collected in a structured way and systematically processed using algorithms. Prevention needs can thus be identified more quickly and precisely, and interventions can be planned, implemented, and evaluated for specific target groups. At the same time, however, it is necessary that data processing not only meets high technical but also ethical standards and legal data protection regulations in order to avoid or minimize risks.This discussion article examines the potentials and risks of digital prevention first from a 'data perspective,' which deals with the use of health-related data for the purpose of prevention, and second from an 'algorithm perspective,' which focuses on the use of algorithmic systems, including artificial intelligence, for the assessment of needs and evaluation of preventive measures, from an ethical and legal point of view. Finally, recommendations are formulated for framework conditions that should be created to strengthen the further development of prevention in the healthcare system.
1000 Sacherschließung
lokal Big data
lokal Bioethics [MeSH]
lokal Algorithms [MeSH]
lokal Leitthema
lokal Humans [MeSH]
lokal Delivery of Health Care/ethics [MeSH]
lokal Prevention
lokal Artificial intelligence
lokal Bedarfserhebung
lokal Artificial Intelligence/ethics [MeSH]
lokal Künstliche Intelligenz
lokal Electronic Health Records/ethics [MeSH]
lokal Morals [MeSH]
lokal Algorithmen
lokal Prävention
lokal Needs assessment
lokal Algorithms
lokal Big Data
lokal Germany [MeSH]
lokal Delivery of Health Care/methods [MeSH]
lokal Artificial Intelligence/legislation
lokal Datasets as Topic/ethics [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RnJpZWxlLCBNaW5vdQ==|https://frl.publisso.de/adhoc/uri/QnLDtmNrZXJob2ZmLCBQZXRlcg==|https://frl.publisso.de/adhoc/uri/RnLDtmhsaWNoLCBXaWVia2U=|https://frl.publisso.de/adhoc/uri/U3BpZWNrZXIgZ2VuYW5udCBEw7ZobWFubiwgSW5kcmE=|https://frl.publisso.de/adhoc/uri/V29vcGVuLCBDaHJpc3RpYW5l
1000 Hinweis
  • DeepGreen-ID: e3ce7b9ceb79416c8a32910fdead1319 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6441761.rdf
1000 Erstellt am 2023-04-25T18:23:03.923+0200
1000 Erstellt von 322
1000 beschreibt frl:6441761
1000 Zuletzt bearbeitet 2023-10-19T11:03:16.431+0200
1000 Objekt bearb. Thu Oct 19 11:03:16 CEST 2023
1000 Vgl. frl:6441761
1000 Oai Id
  1. oai:frl.publisso.de:frl:6441761 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source