Download
s10143-020-01453-6.pdf 470,38KB
WeightNameValue
1000 Titel
  • Outcome prediction in aneurysmal subarachnoid hemorrhage: a comparison of machine learning methods and established clinico-radiological scores
1000 Autor/in
  1. Dengler, Nora F. |
  2. Madai, Vince Istvan |
  3. Unteroberdörster, Meike |
  4. Zihni, Esra |
  5. Brune, Sophie Charlotte |
  6. Hilbert, Adam |
  7. Livne, Michelle |
  8. Wolf, Stefan |
  9. Vajkoczy, Peter |
  10. Frey, Dietmar |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-01-20
1000 Erschienen in
1000 Quellenangabe
  • 44(5):2837-2846
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10143-020-01453-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490233/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Reliable prediction of outcomes of aneurysmal subarachnoid hemorrhage (aSAH) based on factors available at patient admission may support responsible allocation of resources as well as treatment decisions. Radiographic and clinical scoring systems may help clinicians estimate disease severity, but their predictive value is limited, especially in devising treatment strategies. In this study, we aimed to examine whether a machine learning (ML) approach using variables available on admission may improve outcome prediction in aSAH compared to established scoring systems. Combined clinical and radiographic features as well as standard scores (Hunt & Hess, WFNS, BNI, Fisher, and VASOGRADE) available on patient admission were analyzed using a consecutive single-center database of patients that presented with aSAH (n = 388). Different ML models (seven algorithms including three types of traditional generalized linear models, as well as a tree bosting algorithm, a support vector machine classifier (SVMC), a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net) were trained for single features, scores, and combined features with a random split into training and test sets (4:1 ratio), ten-fold cross-validation, and 50 shuffles. For combined features, feature importance was calculated. There was no difference in performance between traditional and other ML applications using traditional clinico-radiographic features. Also, no relevant difference was identified between a combined set of clinico-radiological features available on admission (highest AUC 0.78, tree boosting) and the best performing clinical score GCS (highest AUC 0.76, tree boosting). GCS and age were the most important variables for the feature combination. In this cohort of patients with aSAH, the performance of functional outcome prediction by machine learning techniques was comparable to traditional methods and established clinical scores. Future work is necessary to examine input variables other than traditional clinico-radiographic features and to evaluate whether a higher performance for outcome prediction in aSAH can be achieved.
1000 Sacherschließung
lokal Original Article
lokal Radiography [MeSH]
lokal Artificial neural net
lokal Humans [MeSH]
lokal Prognosis [MeSH]
lokal Machine Learning [MeSH]
lokal Aneurysmal subarachnoid hemorrhage
lokal Tree boosting
lokal Bayes Theorem [MeSH]
lokal Deep learning
lokal Outcome prediction
lokal Subarachnoid Hemorrhage/diagnostic imaging [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-7783-8053|https://frl.publisso.de/adhoc/uri/TWFkYWksIFZpbmNlIElzdHZhbg==|https://frl.publisso.de/adhoc/uri/VW50ZXJvYmVyZMO2cnN0ZXIsIE1laWtl|https://frl.publisso.de/adhoc/uri/WmlobmksIEVzcmE=|https://frl.publisso.de/adhoc/uri/QnJ1bmUsIFNvcGhpZSBDaGFybG90dGU=|https://frl.publisso.de/adhoc/uri/SGlsYmVydCwgQWRhbQ==|https://frl.publisso.de/adhoc/uri/TGl2bmUsIE1pY2hlbGxl|https://frl.publisso.de/adhoc/uri/V29sZiwgU3RlZmFu|https://frl.publisso.de/adhoc/uri/VmFqa29jenksIFBldGVy|https://frl.publisso.de/adhoc/uri/RnJleSwgRGlldG1hcg==
1000 Hinweis
  • DeepGreen-ID: fd31dc61eda4489497a4f6e124bad478 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6448919.rdf
1000 Erstellt am 2023-05-04T10:44:55.363+0200
1000 Erstellt von 322
1000 beschreibt frl:6448919
1000 Zuletzt bearbeitet 2023-10-20T23:55:42.998+0200
1000 Objekt bearb. Fri Oct 20 23:55:42 CEST 2023
1000 Vgl. frl:6448919
1000 Oai Id
  1. oai:frl.publisso.de:frl:6448919 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source