Download
s12911-021-01506-w.pdf 1,64MB
WeightNameValue
1000 Titel
  • Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
1000 Autor/in
  1. Mamandipoor, Behrooz |
  2. Frutos-Vivar, Fernando |
  3. Peñuelas, Oscar |
  4. Rezar, Richard |
  5. Raymondos, Konstantinos |
  6. Muriel, Alfonso |
  7. Du, Bin |
  8. Thille, Arnaud W. |
  9. Ríos, Fernando |
  10. González, Marco |
  11. del-Sorbo, Lorenzo |
  12. del Carmen Marín, Maria |
  13. Pinheiro, Bruno Valle |
  14. Soares, Marco Antonio |
  15. Nin, Nicolas |
  16. Maggiore, Salvatore M. |
  17. Bersten, Andrew |
  18. Kelm, Malte |
  19. Bruno, Raphael Romano |
  20. Amin, Pravin |
  21. Cakar, Nahit |
  22. Suh, Gee Young |
  23. Abroug, Fekri |
  24. Jibaja, Manuel |
  25. Matamis, Dimitros |
  26. Zeggwagh, Amine Ali |
  27. Sutherasan, Yuda |
  28. Anzueto, Antonio |
  29. Wernly, Bernhard |
  30. Esteban, Andrés |
  31. Jung, Christian |
  32. Osmani, Venet |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-05-07
1000 Erschienen in
1000 Quellenangabe
  • 21(1):152
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12911-021-01506-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102841/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid-base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters.!##!Methods!#!We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders.!##!Results!#!Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders.!##!Conclusion!#!The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes.!##!Trial registration!#!NCT02731898 ( https://clinicaltrials.gov/ct2/show/NCT02731898 ), prospectively registered on April 8, 2016.
1000 Sacherschließung
lokal Machine learning
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal ICU
lokal Prospective Studies [MeSH]
lokal Critical Illness/therapy [MeSH]
lokal Intensive Care Units [MeSH]
lokal Risk stratification
lokal Standards, technology, machine learning, and modeling
lokal Machine Learning [MeSH]
lokal Respiration, Artificial [MeSH]
lokal Mechanical ventilation
lokal Research Article
lokal Critical care medicine
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWFtYW5kaXBvb3IsIEJlaHJvb3o=|https://frl.publisso.de/adhoc/uri/RnJ1dG9zLVZpdmFyLCBGZXJuYW5kbw==|https://frl.publisso.de/adhoc/uri/UGXDsXVlbGFzLCBPc2Nhcg==|https://frl.publisso.de/adhoc/uri/UmV6YXIsIFJpY2hhcmQ=|https://frl.publisso.de/adhoc/uri/UmF5bW9uZG9zLCBLb25zdGFudGlub3M=|https://frl.publisso.de/adhoc/uri/TXVyaWVsLCBBbGZvbnNv|https://frl.publisso.de/adhoc/uri/RHUsIEJpbg==|https://frl.publisso.de/adhoc/uri/VGhpbGxlLCBBcm5hdWQgVy4=|https://frl.publisso.de/adhoc/uri/UsOtb3MsIEZlcm5hbmRv|https://frl.publisso.de/adhoc/uri/R29uesOhbGV6LCBNYXJjbw==|https://frl.publisso.de/adhoc/uri/ZGVsLVNvcmJvLCBMb3Jlbnpv|https://frl.publisso.de/adhoc/uri/ZGVsIENhcm1lbiBNYXLDrW4sIE1hcmlh|https://frl.publisso.de/adhoc/uri/UGluaGVpcm8sIEJydW5vIFZhbGxl|https://frl.publisso.de/adhoc/uri/U29hcmVzLCBNYXJjbyBBbnRvbmlv|https://frl.publisso.de/adhoc/uri/TmluLCBOaWNvbGFz|https://frl.publisso.de/adhoc/uri/TWFnZ2lvcmUsIFNhbHZhdG9yZSBNLg==|https://frl.publisso.de/adhoc/uri/QmVyc3RlbiwgQW5kcmV3|https://frl.publisso.de/adhoc/uri/S2VsbSwgTWFsdGU=|https://frl.publisso.de/adhoc/uri/QnJ1bm8sIFJhcGhhZWwgUm9tYW5v|https://frl.publisso.de/adhoc/uri/QW1pbiwgUHJhdmlu|https://frl.publisso.de/adhoc/uri/Q2FrYXIsIE5haGl0|https://frl.publisso.de/adhoc/uri/U3VoLCBHZWUgWW91bmc=|https://frl.publisso.de/adhoc/uri/QWJyb3VnLCBGZWtyaQ==|https://frl.publisso.de/adhoc/uri/SmliYWphLCBNYW51ZWw=|https://frl.publisso.de/adhoc/uri/TWF0YW1pcywgRGltaXRyb3M=|https://frl.publisso.de/adhoc/uri/WmVnZ3dhZ2gsIEFtaW5lIEFsaQ==|https://frl.publisso.de/adhoc/uri/U3V0aGVyYXNhbiwgWXVkYQ==|https://frl.publisso.de/adhoc/uri/QW56dWV0bywgQW50b25pbw==|https://frl.publisso.de/adhoc/uri/V2Vybmx5LCBCZXJuaGFyZA==|https://frl.publisso.de/adhoc/uri/RXN0ZWJhbiwgQW5kcsOpcw==|https://orcid.org/0000-0001-8325-250X|https://frl.publisso.de/adhoc/uri/T3NtYW5pLCBWZW5ldA==
1000 Hinweis
  • DeepGreen-ID: 007d237b261348e2abcb29847efc5678 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6463597.rdf
1000 Erstellt am 2023-11-15T19:34:55.310+0100
1000 Erstellt von 322
1000 beschreibt frl:6463597
1000 Zuletzt bearbeitet 2023-11-30T21:58:03.858+0100
1000 Objekt bearb. Thu Nov 30 21:58:03 CET 2023
1000 Vgl. frl:6463597
1000 Oai Id
  1. oai:frl.publisso.de:frl:6463597 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source