Download
s12210-020-00889-8.pdf 1,40MB
WeightNameValue
1000 Titel
  • Earth’s gravity from space
1000 Autor/in
  1. Rummel, Reiner |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-02-28
1000 Erschienen in
1000 Quellenangabe
  • 31(Suppl 1):3-13
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s12210-020-00889-8 |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Satellite gravimetry began with the launch of the satellites Sputnik 1 and 2 in 1957. During the following 43 years, more and more details were discovered and the models of the Earth’s gravity could be refined. Methods improved and more and more satellite orbits and ground stations were added in the analysis, employing more advanced and precise measuring techniques. A new era started with the dedicated gravimetry missions CHAMP (2000–2010), GRACE (2002–2017), and GOCE (2009–2013). The methods of satellite-to-satellite tracking and satellite gradiometry resulted in a substantial improvement of our knowledge of the Earth’s gravity field in terms of accuracy and its spatial and temporal variations. There are three basic ways of using gravity and geoid models in Earth sciences and geodesy. First, in solid Earth physics, the highs and lows of the field are investigated in comparison with an idealized Earth, e.g., a hydrostatic equilibrium figure. In particular, in South America, Africa, Himalaya and Antarctica the gravity field is known much better now, due to GOCE and lead to an improved understanding of the continental crust and lithosphere. Second, in oceanography, the geoid serves as surface in equilibrium, a hypothetical ocean at rest. The ocean topography is the deviation of the actual ocean surface, measured by satellite altimetry, from this reference. The ocean topography serves as a new and independent input to ocean circulation modeling and leads to an improved understanding of ocean transport of mass, heat, and nutrients. Similarly, geodetic heights of the land surface will soon be referred to the geoid, leading to globally consistent heights and enabling the removal of existent systematic deformations and offsets of national and continental height systems. Third, the GRACE time series of monthly gravity models, reflecting seasonal, inter-annual and long-term gravity changes, became one of the most valuable data sources of climate change studies.</jats:p>
1000 Sacherschließung
lokal Ocean topography
lokal Gravity field
lokal GOCE
lokal Earth's Gravity Field and Earth Sciences
lokal GRACE
lokal Isostasy
lokal Satellite gravimetry
lokal Global water cycle
lokal Height systems
lokal Earth’s Gravity Field and Earth Sciences
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UnVtbWVsLCBSZWluZXI=
1000 Hinweis
  • DeepGreen-ID: 8d1e409067fb471d81dfbe700b18e2b9 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
  1. Earth’s gravity from space
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6471160.rdf
1000 Erstellt am 2023-11-18T11:21:39.167+0100
1000 Erstellt von 322
1000 beschreibt frl:6471160
1000 Zuletzt bearbeitet 2023-12-01T13:48:40.170+0100
1000 Objekt bearb. Fri Dec 01 13:48:40 CET 2023
1000 Vgl. frl:6471160
1000 Oai Id
  1. oai:frl.publisso.de:frl:6471160 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source