Download
s11673-020-10004-z.pdf 221,08KB
WeightNameValue
1000 Titel
  • Applying a Precautionary Approach to Mobile Contact Tracing for COVID-19: The Value of Reversibility
1000 Autor/in
  1. Nijsingh, Niels |
  2. van Bergen, Anne |
  3. Wild, Verina |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-08-25
1000 Erschienen in
1000 Quellenangabe
  • 17(4):823-827
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11673-020-10004-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445727/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The COVID-19 pandemic presents unprecedented challenges to public health decision-making. Specifically, the lack of evidence and the urgency with which a response is called for, raise the ethical challenge of assessing how much (and what kind of) evidence is required for the justification of interventions in response to the various threats we face. Here we discuss the intervention of introducing technology that aims to trace and alert contacts of infected persons-contact tracing (CT) technology. Determining whether such an intervention is proportional is complicated by complex trade-offs and feedback loops. We suggest that the resulting uncertainties necessitate a precautionary approach. On the one hand, precautionary reasons support CT technology as a means to contribute to the prevention of harms caused by alternative interventions, or COVID-19 itself. On the other hand, however, both the extent to which such technology itself present risks of serious harm, as well as its effectiveness, remain unclear. We therefore argue that a precautionary approach should put reversibility of CT technology at the forefront. We outline several practical implications.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Risk, Precautionary principle, Pandemic
lokal Symposium: COVID-19
lokal Public health ethics
lokal Risk Assessment [MeSH]
lokal Humans [MeSH]
lokal mHealth
lokal Uncertainty
lokal Pandemics [MeSH]
lokal Public Health [MeSH]
lokal Contact Tracing/methods [MeSH]
lokal Infectious disease
lokal COVID-19/transmission [MeSH]
lokal Mobile Applications [MeSH]
lokal SARS-CoV-2 [MeSH]
lokal Uncertainty [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-5698-3566|https://frl.publisso.de/adhoc/uri/dmFuIEJlcmdlbiwgQW5uZQ==|https://frl.publisso.de/adhoc/uri/V2lsZCwgVmVyaW5h
1000 Hinweis
  • DeepGreen-ID: 03d1882ced9b4a069e07ec430755d0eb ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6471530.rdf
1000 Erstellt am 2023-11-18T13:55:36.573+0100
1000 Erstellt von 322
1000 beschreibt frl:6471530
1000 Zuletzt bearbeitet 2024-04-04T09:44:59.816+0200
1000 Objekt bearb. Thu Apr 04 09:44:59 CEST 2024
1000 Vgl. frl:6471530
1000 Oai Id
  1. oai:frl.publisso.de:frl:6471530 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source