Download
1-s2.0-S2589004223027177-main-2.pdf 4,58MB
WeightNameValue
1000 Titel
  • Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva
1000 Autor/in
  1. Jürgensen , Anna-Maria |
  2. Panagiotis, Sakagiannis |
  3. Schleyer, Michael |
  4. Gerber, Bertram |
  5. Nawrot, Martin Paul |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-26
1000 Erschienen in
1000 Quellenangabe
  • 27(1):108640
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.isci.2023.108640 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824792/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, underlying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the mushroom body. We propose a spiking model of the Drosophila larva mushroom body. It includes a feedback motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute prediction error as the difference between expected and present reinforcement. We demonstrate that this can serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theoretically derived features of acquisition and loss of associations that depend on the intensity of the reinforcement and its temporal proximity to the cue. From modeling olfactory learning over the time course of behavioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.
1000 Sacherschließung
lokal Natural sciences
lokal Neuroscience
lokal Techniques in neuroscience
lokal Bioinformatics
lokal Biological sciences
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7871-1887|https://orcid.org/0000-0002-1033-5387|https://orcid.org/0000-0001-8020-1483|https://orcid.org/0000-0003-3003-0051|https://orcid.org/0000-0003-4133-6419
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Bundesministerium für Bildung und Forschung |
1000 Fördernummer
  1. DFG-FOR-2705, grant no. 403329959; DFG-RTG 1960, grant no. 233886668;
  2. 01GQ2103A
1000 Förderprogramm
  1. Structure, Plasticity and Behavioral Function of the Drosophila mushroom body; Neural Circuit Analysis
  2. DrosoExpect
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm Structure, Plasticity and Behavioral Function of the Drosophila mushroom body; Neural Circuit Analysis
    1000 Fördernummer DFG-FOR-2705, grant no. 403329959; DFG-RTG 1960, grant no. 233886668;
  2. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm DrosoExpect
    1000 Fördernummer 01GQ2103A
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6473222.rdf
1000 Erstellt am 2024-02-20T10:41:55.858+0100
1000 Erstellt von 242
1000 beschreibt frl:6473222
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2024-02-23T11:14:41.744+0100
1000 Objekt bearb. Fri Feb 23 11:14:24 CET 2024
1000 Vgl. frl:6473222
1000 Oai Id
  1. oai:frl.publisso.de:frl:6473222 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source