Download
BMH535421.pdf 684,69KB
WeightNameValue
1000 Titel
  • Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery
1000 Autor/in
  1. Monji-Azad, Sara |
  2. Männle, David |
  3. Hesser, Jürgen |
  4. Pohlmann, Jan |
  5. Rotter, Nicole |
  6. Affolter, Annette |
  7. Weis, Cleo Aron |
  8. Ludwig, Sonja |
  9. Scherl, Claudia |
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-01-09
1000 Erschienen in
1000 Quellenangabe
  • 9(1)
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1159/000535421 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845096/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Introduction!#!A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts.!##!Methods!#!An ML model was trained using simulated surface scan data obtained from tumor resections in a pig head cadaver model. It hereby uses 438 2½ D scans of the tissue surface. Tissue shift was induced by a temperature change from 7.91 ± 4.1°C to 36.37 ± 1.28°C.!##!Results!#!Digital twins were generated from various branched and compact resection cavities (RCs) and cut tissues (CT). A temperature increase induced a tissue shift with a significant volume increase of 6 mL and 2 mL in branched and compact RCs, respectively (!##!Conclusions!#!The simulation experiment of induced soft tissue deformation using digital twins based on 2½ D point cloud models proved that our method helps to quantify shape-dependent tissue shifts.
1000 Sacherschließung
lokal Head and neck surgery
lokal Artificial intelligence
lokal Digital twin
lokal Research Article
lokal Point cloud registration
lokal Tissue shift
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TW9uamktQXphZCwgU2FyYQ==|https://frl.publisso.de/adhoc/uri/TcOkbm5sZSwgRGF2aWQ=|https://frl.publisso.de/adhoc/uri/SGVzc2VyLCBKw7xyZ2Vu|https://frl.publisso.de/adhoc/uri/UG9obG1hbm4sIEphbg==|https://frl.publisso.de/adhoc/uri/Um90dGVyLCBOaWNvbGU=|https://frl.publisso.de/adhoc/uri/QWZmb2x0ZXIsIEFubmV0dGU=|https://frl.publisso.de/adhoc/uri/V2VpcywgQ2xlbyBBcm9u|https://frl.publisso.de/adhoc/uri/THVkd2lnLCBTb25qYQ==|https://frl.publisso.de/adhoc/uri/U2NoZXJsLCBDbGF1ZGlh
1000 Hinweis
  • DeepGreen-ID: 76d73bed99d740e7b36d707f9d365d90 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6473647.rdf
1000 Erstellt am 2024-03-21T13:42:22.724+0100
1000 Erstellt von 322
1000 beschreibt frl:6473647
1000 Zuletzt bearbeitet 2024-05-07T12:12:43.810+0200
1000 Objekt bearb. Tue May 07 12:12:43 CEST 2024
1000 Vgl. frl:6473647
1000 Oai Id
  1. oai:frl.publisso.de:frl:6473647 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source