Download
fpsyg-12-712610.pdf 2,34MB
WeightNameValue
1000 Titel
  • Intersection of Data Science and Smart Destinations: A Systematic Review
1000 Autor/in
  1. Aguirre Montero, Alexander |
  2. López-Sánchez, José Antonio |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-29
1000 Erschienen in
1000 Quellenangabe
  • 12:712610
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-31
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fpsyg.2021.712610 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357985/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>This systematic review adopts a formal and structured approach to review the intersection of data science and smart tourism destinations in terms of components found in previous research. The study period corresponds to 1995–2021 focusing the analysis mainly on the last years (2015–2021), identifying and characterizing the current trends on this research topic. The review comprises documentary research based on bibliometric and conceptual analysis, using the VOSviewer and SciMAT software to analyze articles from the Web of Science database. There is growing interest in this research topic, with more than 300 articles published annually. Data science technologies on which current smart destinations research is based include big data, smart data, data analytics, social media, cloud computing, the internet of things (IoT), smart card data, geographic information system (GIS) technologies, open data, artificial intelligence, and machine learning. Critical research areas for data science techniques and technologies in smart destinations are public tourism marketing, mobility-accessibility, and sustainability. Data analysis techniques and technologies face unprecedented challenges and opportunities post-coronavirus disease-2019 (COVID-19) to build on the huge amount of data and a new tourism model that is more sustainable, smarter, and safer than those previously implemented.</jats:p>
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal bibliometric review
lokal data science
lokal marketing data science
lokal conceptual analysis
lokal COVID-19 pandemic
lokal Psychology
lokal smart destinations
lokal data science technologies
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QWd1aXJyZSBNb250ZXJvLCBBbGV4YW5kZXI=|https://frl.publisso.de/adhoc/uri/TMOzcGV6LVPDoW5jaGV6LCBKb3PDqSBBbnRvbmlv
1000 Hinweis
  • DeepGreen-ID: 6ed709a9b7294136873a8d6380208559 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6476014.rdf
1000 Erstellt am 2024-05-14T09:27:19.275+0200
1000 Erstellt von 322
1000 beschreibt frl:6476014
1000 Zuletzt bearbeitet 2024-05-15T10:16:26.498+0200
1000 Objekt bearb. Wed May 15 10:16:26 CEST 2024
1000 Vgl. frl:6476014
1000 Oai Id
  1. oai:frl.publisso.de:frl:6476014 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source