Download
fmars-08-635568.pdf 2,63MB
WeightNameValue
1000 Titel
  • Using Automatic Identification System (AIS) Data to Estimate Whale Watching Effort
1000 Autor/in
  1. Almunia, Javier |
  2. Delponti, Patricia |
  3. Rosa, Fernando |
1000 Verlag
  • Frontiers Media S.A.
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-26
1000 Erschienen in
1000 Quellenangabe
  • 8:635568
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-28
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fmars.2021.635568 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>The growing concerns about the negative effects caused by whale watching on wild cetacean populations are evincing the need to measure whale watching effort more precisely. The current alternatives do not provide sufficient information or imply time-consuming and staff-intensive tasks that limit their effectiveness to establish the maximum carrying capacity for this tourist activity. A methodology based on big data analysis, using Automatic Identification System (AIS) messages can provide valuable vessel activity information, which is necessary to estimate whale watching effort in areas with cetacean populations. We used AIS data to automatically detect whale watching operations and quantify whale watching effort with high spatial and temporal resolution in the Canary Islands off the west African coast. The results obtained in this study are very encouraging, proving that the methodology can estimate seasonal and annual trends in the whale watching effort. The methodology has also proved to be effective in providing detailed spatial information about the whale watching effort, which makes an interesting tool to manage spatial regulations and enforce exclusion zones. The widespread use of AIS devices in maritime navigation provides an enormous potential to easily extend this methodology to other regions worldwide. Any public strategy aimed at the sustainable use of marine resources should enhance the use of this kind of information technologies, collecting and archiving detailed information on the activity of all the vessels, especially in marine protected areas.</jats:p>
1000 Sacherschließung
lokal cetacean
lokal sustainability
lokal carrying capacity
lokal whale watching
lokal Marine Science
lokal automatic identification system
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QWxtdW5pYSwgSmF2aWVy|https://frl.publisso.de/adhoc/uri/RGVscG9udGksIFBhdHJpY2lh|https://frl.publisso.de/adhoc/uri/Um9zYSwgRmVybmFuZG8=
1000 Hinweis
  • DeepGreen-ID: 94c7f86bf0c34d3c895302640d29d941 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6477852.rdf
1000 Erstellt am 2024-05-21T11:19:16.526+0200
1000 Erstellt von 322
1000 beschreibt frl:6477852
1000 Zuletzt bearbeitet 2024-05-22T09:16:37.756+0200
1000 Objekt bearb. Wed May 22 09:16:37 CEST 2024
1000 Vgl. frl:6477852
1000 Oai Id
  1. oai:frl.publisso.de:frl:6477852 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source