Download
hess-28-1147-2024.pdf 9,68MB
WeightNameValue
1000 Titel
  • A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin
1000 Autor/in
  1. Abdallah, Mohammed |
  2. Zhang, Ke |
  3. Chao, Lijun |
  4. Omer, Abubaker |
  5. Hassaballah, Khalid |
  6. Welde Reda, Kidane |
  7. Liu, Linxin |
  8. Tola, Tolossa Lemma |
  9. Nour, Omar M. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-07
1000 Erschienen in
1000 Quellenangabe
  • 28(5):1147-1172
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-1147-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Precipitation is a vital key element in various studies of hydrology, flood prediction, drought monitoring, and water resource management. The main challenge in conducting studies over remote regions with rugged topography is that weather stations are usually scarce and unevenly distributed. However, open-source satellite-based precipitation products (SPPs) with a suitable resolution provide alternative options in these data-scarce regions, which are typically associated with high uncertainty. To reduce the uncertainty of individual satellite products, we have proposed a D-vine copula-based quantile regression (DVQR) model to merge multiple SPPs with rain gauges (RGs). The DVQR model was employed during the 2001–2017 summer monsoon seasons and compared with two other quantile regression methods based on the multivariate linear (MLQR) and the Bayesian model averaging (BMAQ) techniques, respectively, and with two traditional merging methods – the simple modeling average (SMA) and the one-outlier-removed average (OORA) – using descriptive and categorical statistics. Four SPPs have been considered in this study, namely, Tropical Applications of Meteorology using SATellite (TAMSAT v3.1), the Climate Prediction Center MORPHing Product Climate Data Record (CMORPH-CDR), Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG v06), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR). The bilinear (BIL) interpolation technique was applied to downscale SPPs from a coarse to a fine spatial resolution (1 km). The rugged-topography region of the upper Tekeze–Atbara Basin (UTAB) in Ethiopia was selected as the study area. The results indicate that the precipitation data estimates with the DVQR, MLQR, and BMAQ models and with traditional merging methods outperform the downscaled SPPs. Monthly evaluations reveal that all products perform better in July and September than in June and August due to precipitation variability. The DVQR, MLQR, and BMAQ models exhibit higher accuracy than the traditional merging methods over the UTAB. The DVQR model substantially improved all of the statistical metrics (CC = 0.80, NSE = 0.615, KGE = 0.785, MAE = 1.97 mm d−1, RMSE = 2.86 mm d−1, and PBIAS = 0.96 %) considered compared with the BMAQ and MLQR models. However, the DVQR model did not outperform the BMAQ and MLQR models with respect to the probability of detection (POD) and false-alarm ratio (FAR), although it had the best frequency bias index (FBI) and critical success index (CSI) among all of the employed models. Overall, the newly proposed merging approach improves the quality of SPPs and demonstrates the value of the proposed DVQR model in merging multiple SPPs over regions with rugged topography such as the UTAB. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QWJkYWxsYWgsIE1vaGFtbWVk|https://frl.publisso.de/adhoc/uri/WmhhbmcsIEtl|https://frl.publisso.de/adhoc/uri/Q2hhbywgTGlqdW4=|https://frl.publisso.de/adhoc/uri/T21lciwgQWJ1YmFrZXI=|https://frl.publisso.de/adhoc/uri/SGFzc2FiYWxsYWgsIEtoYWxpZA==|https://frl.publisso.de/adhoc/uri/V2VsZGXCoFJlZGEsIEtpZGFuZQ==|https://frl.publisso.de/adhoc/uri/TGl1LCBMaW54aW4=|https://frl.publisso.de/adhoc/uri/VG9sYSwgVG9sb3NzYcKgTGVtbWE=|https://frl.publisso.de/adhoc/uri/Tm91ciwgT21hcsKgTS4=
1000 Hinweis
  • DeepGreen-ID: b8f9a8e6254447a6ace843440ab793e0 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Key Research and Development Program of China |
  2. National Natural Science Foundation of China |
  3. Fundamental Research Funds for the Central Universities |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Key Research and Development Program of China |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Fundamental Research Funds for the Central Universities |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480110.rdf
1000 Erstellt am 2024-05-23T12:18:29.831+0200
1000 Erstellt von 322
1000 beschreibt frl:6480110
1000 Zuletzt bearbeitet 2024-05-27T11:28:08.118+0200
1000 Objekt bearb. Mon May 27 11:28:08 CEST 2024
1000 Vgl. frl:6480110
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480110 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source