Download
essd-16-1601-2024.pdf 18,07MB
WeightNameValue
1000 Titel
  • HiQ-LAI: a high-quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2022
1000 Autor/in
  1. Yan, Kai |
  2. Wang, Jingrui |
  3. Peng, Rui |
  4. Yang, Kai |
  5. Chen, Xiuzhi |
  6. Yin, Gaofei |
  7. Dong, Jinwei |
  8. Weiss, Marie |
  9. Pu, Jiabin |
  10. Myneni, Ranga B. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-26
1000 Erschienen in
1000 Quellenangabe
  • 16(3):1601-1622
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/essd-16-1601-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Leaf area index (LAI) is a crucial parameter for characterizing vegetation canopy structure and energy absorption capacity. The Moderate Resolution Imaging Spectroradiometer (MODIS) LAI has played a significant role in landmark studies due to its clear theoretical basis, extensive historical time series, extensive validation results, and open accessibility. However, MODIS LAI retrievals are calculated independently for each pixel and a specific day, resulting in high noise levels in the time series and limiting its applications in the regions of optical remote sensing. Reprocessing MODIS LAI predominantly relies on temporal information to achieve smoother LAI profiles with little use of spatial information and may easily ignore genuine LAI anomalies. To address these problems, we designed the spatiotemporal information compositing algorithm (STICA) for the reprocessing of MODIS LAI products. This method integrates information from multiple dimensions, including pixel quality information, spatiotemporal correlation, and the original retrieval, thereby enabling both “reprocessing” and “value-added data” with respect to the existing MODIS LAI products, leading to the development of the high-quality LAI (HiQ-LAI) dataset. Compared with ground measurements, HiQ-LAI shows better performance than the original MODIS product with a root-mean-square error (RMSE) or bias decrease from 0.87 or −0.17 to 0.78 or −0.06, respectively. This is due to the improvement of HiQ-LAI with respect to capturing the seasonality in vegetation phenology and reducing abnormal time-series fluctuations. The time-series stability (TSS) index, which represents temporal stability, indicated that the area with smooth LAI time series expanded from 31.8 % (MODIS) to 78.8 % (HiQ) globally, and this improvement is more obvious in equatorial regions where optical remote sensing cannot usually achieve good performance. We found that HiQ-LAI demonstrates superior continuity and consistency compared with raw MODIS LAI from both spatial and temporal perspectives. We anticipate that the global HiQ-LAI time series, generated using the STICA procedure on the Google Earth Engine (GEE) platform, will substantially enhance support for diverse global LAI time-series applications. The 5 km 8 d HiQ-LAI datasets from 2000 to 2022 are available at https://doi.org/10.5281/zenodo.8296768 (Yan et al., 2023). </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WWFuLCBLYWk=|https://frl.publisso.de/adhoc/uri/V2FuZywgSmluZ3J1aQ==|https://frl.publisso.de/adhoc/uri/UGVuZywgUnVp|https://frl.publisso.de/adhoc/uri/WWFuZywgS2Fp|https://frl.publisso.de/adhoc/uri/Q2hlbiwgWGl1emhp|https://frl.publisso.de/adhoc/uri/WWluLCBHYW9mZWk=|https://frl.publisso.de/adhoc/uri/RG9uZywgSmlud2Vp|https://frl.publisso.de/adhoc/uri/V2Vpc3MsIE1hcmll|https://frl.publisso.de/adhoc/uri/UHUsIEppYWJpbg==|https://frl.publisso.de/adhoc/uri/TXluZW5pLCBSYW5nYcKgQi4=
1000 Hinweis
  • DeepGreen-ID: 42dd1df576c14480a771984751bf3e1b ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480178.rdf
1000 Erstellt am 2024-05-23T12:45:33.988+0200
1000 Erstellt von 322
1000 beschreibt frl:6480178
1000 Zuletzt bearbeitet 2024-05-27T11:59:10.246+0200
1000 Objekt bearb. Mon May 27 11:59:10 CEST 2024
1000 Vgl. frl:6480178
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480178 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source