Download
nhess-24-1415-2024.pdf 10,22MB
WeightNameValue
1000 Titel
  • FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
1000 Autor/in
  1. Maybee, Ben |
  2. Birch, Cathryn E. |
  3. Böing, Steven J. |
  4. Willis, Thomas |
  5. Speight, Linda |
  6. Porson, Aurore N. |
  7. Pilling, Charlie |
  8. Shelton, Kay L. |
  9. Trigg, Mark A. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-04-24
1000 Erschienen in
1000 Quellenangabe
  • 24(4):1415-1436
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/nhess-24-1415-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Surface water flooding (SWF) is a severe hazard associated with extreme convective rainfall, whose spatial and temporal sparsity belie the significant impacts it has on populations and infrastructure. Forecasting the intense convective rainfall that causes most SWF on the temporal and spatial scales required for effective flood forecasting remains extremely challenging. National-scale flood forecasts are currently issued for the UK and are well regarded amongst flood responders, but there is a need for complementary enhanced regional information. Here we present a novel SWF-forecasting method, FOREWARNS (Flood fOREcasts for Surface WAter at a RegioNal Scale), that aims to fill this gap in forecast provision. FOREWARNS compares reasonable worst-case rainfall from a neighbourhood-processed, convection-permitting ensemble forecast system against pre-simulated flood scenarios, issuing a categorical forecast of SWF severity. We report findings from a workshop structured around three historical flood events in Northern England, in which forecast users indicated they found the forecasts helpful and would use FOREWARNS to complement national guidance for action planning in advance of anticipated events. We also present results from objective verification of forecasts for 82 recorded flood events in Northern England from 2013–2022, as well as 725 daily forecasts spanning 2019–2022, using a combination of flood records and precipitation proxies. We demonstrate that FOREWARNS offers good skill in forecasting SWF risk, with high spatial hit rates and low temporal false alarm rates, confirming that user confidence is justified and that FOREWARNS would be suitable for meeting the user requirements of an enhanced operational forecast. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWF5YmVlLCBCZW4=|https://frl.publisso.de/adhoc/uri/QmlyY2gsIENhdGhyeW4gRS4=|https://frl.publisso.de/adhoc/uri/QsO2aW5nLCBTdGV2ZW4gSi4=|https://frl.publisso.de/adhoc/uri/V2lsbGlzLCBUaG9tYXM=|https://frl.publisso.de/adhoc/uri/U3BlaWdodCwgTGluZGE=|https://frl.publisso.de/adhoc/uri/UG9yc29uLCBBdXJvcmUgTi4=|https://frl.publisso.de/adhoc/uri/UGlsbGluZywgQ2hhcmxpZQ==|https://frl.publisso.de/adhoc/uri/U2hlbHRvbiwgS2F5IEwu|https://frl.publisso.de/adhoc/uri/VHJpZ2csIE1hcmsgQS4=
1000 Hinweis
  • DeepGreen-ID: 76c4af4239f2442888ffd9da56dfe1e7 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Natural Environment Research Council |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Natural Environment Research Council |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480577.rdf
1000 Erstellt am 2024-05-23T15:26:40.536+0200
1000 Erstellt von 322
1000 beschreibt frl:6480577
1000 Zuletzt bearbeitet 2024-05-27T13:32:04.644+0200
1000 Objekt bearb. Mon May 27 13:32:04 CEST 2024
1000 Vgl. frl:6480577
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480577 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source