Download
bg-21-1061-2024.pdf 1,59MB
WeightNameValue
1000 Titel
  • A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions
1000 Autor/in
  1. Tang, Jinyun |
  2. Riley, William J. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-04
1000 Erschienen in
1000 Quellenangabe
  • 21(5):1061-1070
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/bg-21-1061-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. One notable observation of enzymatic chemical reactions is that, for a given abundance of enzymes and substrates, temperature increases cause reaction rates to first increase consistent with the Arrhenius relationship, then plateau, and finally fall off quickly to zero at high temperatures. While many mathematical functions have been used to describe this pattern, we here propose a chemical kinetics theory which successfully replicates this observation and provides insights into the processes responsible for these dynamics. The chemical kinetics theory combines the law of mass action, von Smoluchowski's diffusion-limited chemical reaction theory, and Eyring's transition state theory. This new theory reveals that the thermally reversible enzyme denaturation ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution explains the plateau and subsequent decrease in chemical reaction rates with increasing temperature. The temperature-dependent affinity parameter (K) that relates enzymes and substrates through their binding also affects the shape of the emergent temperature response. We demonstrate that with an increase in substrate availability, K shifts the optimal temperature, where reaction rates plateau, towards higher values. Further, we show that the chemical kinetics theory accurately represents 12 sets of published enzyme assay data and includes the popular mechanistic model by Ratkowsky et al. (2005) as a special case. Given its good performance and solid theoretical underpinning, we believe this new theory will facilitate the construction of more mechanistic-based environmental biogeochemical models. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/VGFuZywgSmlueXVu|https://frl.publisso.de/adhoc/uri/UmlsZXksIFdpbGxpYW0gSi4=
1000 Hinweis
  • DeepGreen-ID: 17e6f2acbe5048d78282555373a0463b ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Biological and Environmental Research |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Biological and Environmental Research |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480835.rdf
1000 Erstellt am 2024-05-23T17:10:13.131+0200
1000 Erstellt von 322
1000 beschreibt frl:6480835
1000 Zuletzt bearbeitet 2024-05-27T11:20:46.792+0200
1000 Objekt bearb. Mon May 27 11:20:46 CEST 2024
1000 Vgl. frl:6480835
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480835 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source