Download
tc-18-1241-2024.pdf 13,23MB
WeightNameValue
1000 Titel
  • Deep clustering in subglacial radar reflectance reveals subglacial lakes
1000 Autor/in
  1. Dong, Sheng |
  2. Fu, Lei |
  3. Tang, Xueyuan |
  4. Li, Zefeng |
  5. Chen, Xiaofei |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-19
1000 Erschienen in
1000 Quellenangabe
  • 18(3):1241-1257
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-1241-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Ice-penetrating radar (IPR) imaging is a valuable tool for observing the internal structure and bottom of ice sheets. Subglacial water bodies, also known as subglacial lakes, generally appear as distinct, bright, flat, and continuous reflections in IPR images. In this study, we use available IPR images from the Gamburtsev Subglacial Mountains to extract one-dimensional reflector waveform features of the ice–bedrock interface. We apply a deep-learning method to reduce the dimension of the reflector features. An unsupervised clustering method is then used to separate different types of reflector features, including a reflector type corresponding to subglacial lakes. The derived clustering labels are then used to detect features of subglacial lakes in IPR images. Using this method, we compare the new detections with a known-lakes inventory. The results indicate that this new method identified additional subglacial lakes that were not previously detected, and some previously known lakes are found to correspond to other reflector clusters. This method can offer automatic detections of subglacial lakes and provide new insight for subglacial studies. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RG9uZywgU2hlbmc=|https://frl.publisso.de/adhoc/uri/RnUsIExlaQ==|https://frl.publisso.de/adhoc/uri/VGFuZywgWHVleXVhbg==|https://frl.publisso.de/adhoc/uri/TGksIFplZmVuZw==|https://frl.publisso.de/adhoc/uri/Q2hlbiwgWGlhb2ZlaQ==
1000 Hinweis
  • DeepGreen-ID: 524bce9174c7489ea074c71a21e2d385 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
  2. National Key Research and Development Program of China |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer National Key Research and Development Program of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480999.rdf
1000 Erstellt am 2024-05-23T18:17:43.976+0200
1000 Erstellt von 322
1000 beschreibt frl:6480999
1000 Zuletzt bearbeitet 2024-05-27T11:45:43.213+0200
1000 Objekt bearb. Mon May 27 11:45:43 CEST 2024
1000 Vgl. frl:6480999
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480999 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source