Download
bg-20-4795-2023.pdf 3,17MB
WeightNameValue
1000 Titel
  • Temporal variability of observed and simulated gross primary productivity, modulated by vegetation state and hydrometeorological drivers
1000 Autor/in
  1. De Pue, Jan |
  2. Wieneke, Sebastian |
  3. Bastos, Ana |
  4. Barrios, José Miguel |
  5. Liu, Liyang |
  6. Ciais, Philippe |
  7. Arboleda, Alirio |
  8. Hamdi, Rafiq |
  9. Maleki, Maral |
  10. Maignan, Fabienne |
  11. Gellens-Meulenberghs, Françoise |
  12. Janssens, Ivan |
  13. Balzarolo, Manuela |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-06
1000 Erschienen in
1000 Quellenangabe
  • 20(23):4795-4818
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/bg-20-4795-2023 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. It is modulated by hydrometeorological drivers (i.e. short-wave radiation, air temperature, vapour pressure deficit and soil moisture) and the vegetation state (i.e. canopy greenness, leaf area index) at instantaneous to interannual timescales. In this study, we set out to evaluate the ability of GPP models to capture this variability. Eleven models were considered, which rely purely on remote sensing data (RS-driven), meteorological data (meteo-driven, e.g. dynamic global vegetation models; DGVMs) or a combination of both (hybrid, e.g. light-use efficiency, LUE, models). They were evaluated using in situ observations at 61 eddy covariance sites, covering a broad range of herbaceous and forest biomes. The results illustrated how the determinant of temporal variability shifts from meteorological variables at sub-seasonal timescales to biophysical variables at seasonal and interannual timescales. RS-driven models lacked the sensitivity to the dominant drivers at short timescales (i.e. short-wave radiation and vapour pressure deficit) and failed to capture the decoupling of photosynthesis and canopy greenness (e.g. in evergreen forests). Conversely, meteo-driven models accurately captured the variability across timescales, despite the challenges in the prognostic simulation of the vegetation state. The largest errors were found in water-limited sites, where the accuracy of the soil moisture dynamics determines the quality of the GPP estimates. In arid herbaceous sites, canopy greenness and photosynthesis were more tightly coupled, resulting in improved results with RS-driven models. Hybrid models capitalized on the combination of RS observations and meteorological information. LUE models were among the most accurate models to monitor GPP across all biomes, despite their simple architecture. Overall, we conclude that the combination of meteorological drivers and remote sensing observations is required to yield an accurate reproduction of the spatio-temporal variability of GPP. To further advance the performance of DGVMs, improvements in the soil moisture dynamics and vegetation evolution are needed. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RGXCoFB1ZSwgSmFu|https://frl.publisso.de/adhoc/uri/V2llbmVrZSwgU2ViYXN0aWFu|https://frl.publisso.de/adhoc/uri/QmFzdG9zLCBBbmE=|https://frl.publisso.de/adhoc/uri/QmFycmlvcywgSm9zw6nCoE1pZ3VlbA==|https://frl.publisso.de/adhoc/uri/TGl1LCBMaXlhbmc=|https://frl.publisso.de/adhoc/uri/Q2lhaXMsIFBoaWxpcHBl|https://frl.publisso.de/adhoc/uri/QXJib2xlZGEsIEFsaXJpbw==|https://frl.publisso.de/adhoc/uri/SGFtZGksIFJhZmlx|https://frl.publisso.de/adhoc/uri/TWFsZWtpLCBNYXJhbA==|https://frl.publisso.de/adhoc/uri/TWFpZ25hbiwgRmFiaWVubmU=|https://frl.publisso.de/adhoc/uri/R2VsbGVucy1NZXVsZW5iZXJnaHMsIEZyYW7Dp29pc2U=|https://frl.publisso.de/adhoc/uri/SmFuc3NlbnMsIEl2YW4=|https://frl.publisso.de/adhoc/uri/QmFsemFyb2xvLCBNYW51ZWxh
1000 Hinweis
  • DeepGreen-ID: 9792664a1cee4ef0bfeff2a97b208f84 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Belgian Federal Science Policy Office |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Belgian Federal Science Policy Office |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481337.rdf
1000 Erstellt am 2024-05-23T20:40:06.160+0200
1000 Erstellt von 322
1000 beschreibt frl:6481337
1000 Zuletzt bearbeitet 2024-05-27T09:19:28.976+0200
1000 Objekt bearb. Mon May 27 09:19:28 CEST 2024
1000 Vgl. frl:6481337
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481337 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source