Download
tc-18-3857-2024.pdf 4,14MB
WeightNameValue
1000 Titel
  • Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
1000 Autor/in
  1. Montpetit, Benoit |
  2. King, Joshua |
  3. Meloche, Julien |
  4. Derksen, Chris |
  5. Siqueira, Paul |
  6. Adam, J. Max |
  7. Toose, Peter |
  8. Brady, Mike |
  9. Wendleder, Anna |
  10. Vionnet, Vincent |
  11. Leroux, Nicolas R. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-28
1000 Erschienen in
1000 Quellenangabe
  • 18(8):3857-3874
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-3857-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Accurate snow information at high spatial and temporal resolution is needed to support climate services, water resource management, and environmental prediction services. However, snow remains the only element of the water cycle without a dedicated Earth observation mission. The snow scientific community has shown that Ku-band radar measurements provide quality snow information with its sensitivity to snow water equivalent and the wet/dry state of snow. With recent developments of tools like the snow micropenetrometer (SMP) to retrieve snow microstructure data in the field and radiative transfer models like the Snow Microwave Radiative Transfer (SMRT) model, it becomes possible to properly characterize the snow and how it translates into radar backscatter measurements. An experiment at Trail Valley Creek (TVC), Northwest Territories, Canada, was conducted during the winter of 2018/19 in order to characterize the impacts of varying snow geophysical properties on Ku-band radar backscatter at a 100 m scale. Airborne Ku-band data were acquired using the University of Massachusetts radar instrument. This study shows that it is possible to calibrate SMP data to retrieve statistical information on snow geophysical properties and properly characterize a representative snowpack at the experiment scale. The tundra snowpack measured during the campaign can be characterize by two layers corresponding to a rounded snow grain layer and a depth hoar layer. Using RADARSAT-2 and TerraSAR-X data, soil background roughness properties were retrieved (msssoil=0.010±0.002), and it was shown that a single value could be used for the entire domain. Microwave snow grain size polydispersity values of 0.74 and 1.11 for rounded and depth hoar snow grains, respectively, were retrieved. Using the geometrical optics surface backscatter model, the retrieved effective soil permittivity increased from C-band (εsoil=2.47) to X-band (εsoil=2.61) and to Ku-band (εsoil=2.77) for the TVC domain. Using the SMRT and the retrieved soil and snow parameterizations, an RMSE of 2.6 dB was obtained between the measured and simulated Ku-band backscatter values when using a global set of parameters for all measured sites. When using a distributed set of soil and snow parameters, the RMSE drops to 0.9 dB. This study thus shows that it is possible to link Ku-band radar backscatter measurements to snow conditions on the ground using a priori knowledge of the snow conditions to retrieve snow water equivalent (SWE) at the 100 m scale. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TW9udHBldGl0LCBCZW5vaXQ=|https://frl.publisso.de/adhoc/uri/S2luZywgSm9zaHVh|https://frl.publisso.de/adhoc/uri/TWVsb2NoZSwgSnVsaWVu|https://frl.publisso.de/adhoc/uri/RGVya3NlbiwgQ2hyaXM=|https://frl.publisso.de/adhoc/uri/U2lxdWVpcmEsIFBhdWw=|https://frl.publisso.de/adhoc/uri/QWRhbSwgSi4gTWF4|https://frl.publisso.de/adhoc/uri/VG9vc2UsIFBldGVy|https://frl.publisso.de/adhoc/uri/QnJhZHksIE1pa2U=|https://frl.publisso.de/adhoc/uri/V2VuZGxlZGVyLCBBbm5h|https://frl.publisso.de/adhoc/uri/Vmlvbm5ldCwgVmluY2VudA==|https://frl.publisso.de/adhoc/uri/TGVyb3V4LCBOaWNvbGFzIFIu
1000 Hinweis
  • DeepGreen-ID: 27d53d9ff82f45ff90347c07b27e30fd ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Environment and Climate Change Canada |
  2. Canadian Space Agency |
  3. National Aeronautics and Space Administration |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Environment and Climate Change Canada |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Canadian Space Agency |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer National Aeronautics and Space Administration |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486308.rdf
1000 Erstellt am 2024-10-03T01:02:16.917+0200
1000 Erstellt von 322
1000 beschreibt frl:6486308
1000 Zuletzt bearbeitet 2024-10-04T16:36:34.193+0200
1000 Objekt bearb. Fri Oct 04 16:36:34 CEST 2024
1000 Vgl. frl:6486308
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486308 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source