Download
hess-28-2357-2024.pdf 6,53MB
WeightNameValue
1000 Titel
  • Machine learning and global vegetation: random forests for downscaling and gap filling
1000 Autor/in
  1. van Jaarsveld, Barry |
  2. Hauswirth, Sandra M. |
  3. Wanders, Niko |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-05
1000 Erschienen in
1000 Quellenangabe
  • 28(11):2357-2374
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-2357-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Drought is a devastating natural disaster, during which water shortage often manifests itself in the health of vegetation. Unfortunately, it is difficult to obtain high-resolution vegetation drought impact information that is spatially and temporally consistent. While remotely sensed products can provide part of this information, they often suffer from data gaps and limitations with respect to their spatial or temporal resolution. A persistent feature among remote-sensing products is the trade-off between the spatial resolution and revisit time: high temporal resolution is met with coarse spatial resolution and vice versa. Machine learning methods have been successfully applied in a wide range of remote-sensing and hydrological studies. However, global applications to resolve drought impacts on vegetation dynamics still need to be made available, as there is significant potential for such a product to aid with improved drought impact monitoring. To this end, this study predicted global vegetation dynamics based on the enhanced vegetation index (evi) and the popular Random forest (RF) regressor algorithm at 0.1°. We assessed the applicability of RF as a gap-filling and downscaling tool to generate global evi estimates that are spatially and temporally consistent. To do this, we trained an RF regressor with 0.1° evi data, using a host of features indicative of the water and energy balances experienced by vegetation, and evaluated the performance of this new product. Next, to test whether the RF is robust in terms of spatial resolution, we downscale the global evi: the model trained on 0.1° data is used to predict evi at a 0.01° resolution. The results show that the RF can capture global evi dynamics at both a 0.1° resolution (RMSE: 0.02–0.4) and at a finer 0.01° resolution (RMSE: 0.04–0.6). Overall errors were higher in the downscaled 0.01° product compared with the 0.1° product. Nevertheless, relative increases remained small, demonstrating that RF can be used to create downscaled and temporally consistent evi products. Additional error analysis revealed that errors vary spatiotemporally, with underrepresented land cover types and periods of extreme vegetation conditions having the highest errors. Finally, this model is used to produce global, spatially continuous evi products at both a 0.1 and 0.01° spatial resolution for 2003–2013 at an 8 d frequency. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/dmFuIEphYXJzdmVsZCwgQmFycnk=|https://frl.publisso.de/adhoc/uri/SGF1c3dpcnRoLCBTYW5kcmEgTS4=|https://frl.publisso.de/adhoc/uri/V2FuZGVycywgTmlrbw==
1000 Hinweis
  • DeepGreen-ID: 6e49a41f57fa4e8ca1515340d567216d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. European Commission |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Commission |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486657.rdf
1000 Erstellt am 2024-10-03T03:00:28.573+0200
1000 Erstellt von 322
1000 beschreibt frl:6486657
1000 Zuletzt bearbeitet 2024-10-04T14:53:04.857+0200
1000 Objekt bearb. Fri Oct 04 14:53:04 CEST 2024
1000 Vgl. frl:6486657
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486657 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source