Download
essd-16-3781-2024.pdf 5,32MB
WeightNameValue
1000 Titel
  • Retrieving ground-level PM2.5 concentrations in China (2013–2021) with a numerical-model-informed testbed to mitigate sample-imbalance-induced biases
1000 Autor/in
  1. Li, Siwei |
  2. Ding, Yu |
  3. Xing, Jia |
  4. Fu, Joshua S. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-27
1000 Erschienen in
1000 Quellenangabe
  • 16(8):3781-3793
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/essd-16-3781-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Ground-level PM2.5 data derived from satellites with machine learning are crucial for health and climate assessments. However, uncertainties persist due to the absence of spatially covered observations. To address this, we propose a novel testbed using nontraditional numerical simulations to evaluate PM2.5 estimation across the entire spatial domain. The testbed emulates the general machine-learning approach by training the model with grids corresponding to ground monitoring sites and subsequently testing its predictive accuracy for other locations. Our approach enables comprehensive evaluation of various machine-learning methods' performance in estimating PM2.5 across the spatial domain for the first time. Unexpected results are shown in the application in China, with larger absolute PM2.5 biases found in densely populated regions with abundant ground observations across all benchmark models due to the higher baseline concentration, though the relative error (approximately 20 %) is smaller compared to that in rural areas (over 50 %). The imbalance in training samples, mostly from urban areas with high emissions, is the main reason, leading to significant overestimation due to the lack of monitors in downwind areas where PM2.5 is transported from urban areas with varying vertical profiles. Our proposed testbed also provides an efficient strategy for optimizing model structure or training samples to enhance satellite-retrieval model performance. Integration of spatiotemporal features, especially with conventional neural network (CNN)-based deep-learning approaches like the residual neural network (ResNet) model, has successfully mitigated PM2.5 overestimation (by 5–30 µg m−3) and the corresponding exposure (by 3 million people ⋅ µg m−3) in the downwind area over 9 years (2013–2021) compared to the traditional approach. Furthermore, the incorporation of 600 strategically positioned ground monitoring sites identified through the testbed is essential for achieving a more balanced distribution of training samples, thereby ensuring precise PM2.5 estimation and facilitating the assessment of the associated impacts in China. In addition to presenting the retrieved surface PM2.5 concentrations in China from 2013 to 2021, this study provides a testbed dataset derived from physical modeling simulations which can serve to evaluate the performance of data-driven methodologies, such as machine learning, in estimating spatial PM2.5 concentrations for the community (Li et al., 2024a; https://doi.org/10.5281/zenodo.11122294). </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGksIFNpd2Vp|https://frl.publisso.de/adhoc/uri/RGluZywgWXU=|https://frl.publisso.de/adhoc/uri/WGluZywgSmlh|https://frl.publisso.de/adhoc/uri/RnUsIEpvc2h1YSBTLg==
1000 Hinweis
  • DeepGreen-ID: 56d92f7a413148129e99b7dfe6b8ed72 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486955.rdf
1000 Erstellt am 2024-10-03T04:23:07.934+0200
1000 Erstellt von 322
1000 beschreibt frl:6486955
1000 Zuletzt bearbeitet 2024-10-04T16:36:47.266+0200
1000 Objekt bearb. Fri Oct 04 16:36:47 CEST 2024
1000 Vgl. frl:6486955
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486955 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source