Download
hess-28-2531-2024.pdf 7,90MB
WeightNameValue
1000 Titel
  • Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
1000 Autor/in
  1. Muñoz, David F. |
  2. Moftakhari, Hamed |
  3. Moradkhani, Hamid |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-14
1000 Erschienen in
1000 Quellenangabe
  • 28(11):2531-2553
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-2531-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Compound flood (CF) modeling enables the simulation of nonlinear water level dynamics in which concurrent or successive flood drivers synergize, producing larger impacts than those from individual drivers. However, CF modeling is subject to four main sources of uncertainty: (i) the initial condition, (ii) the forcing (or boundary) conditions, (iii) the model parameters, and (iv) the model structure. These sources of uncertainty, if not quantified and effectively reduced, cascade in series throughout the modeling chain and compromise the accuracy of CF hazard assessments. Here, we characterize cascading uncertainty using linked process-based and machine learning (PB–ML) models for a well-known CF event, namely, Hurricane Harvey in Galveston Bay, TX. For this, we run a set of hydrodynamic model scenarios to quantify isolated and cascading uncertainty in terms of maximum water level residuals; additionally, we track the evolution of residuals during the onset, peak, and dissipation of Hurricane Harvey. We then develop multiple linear regression (MLR) and PB–ML models to estimate the relative and cumulative contribution of the four sources of uncertainty to total uncertainty over time. Results from this study show that the proposed PB–ML model captures “hidden” nonlinear associations and interactions among the sources of uncertainty, thereby outperforming conventional MLR models. The model structure and forcing conditions are the main sources of uncertainty in CF modeling, and their corresponding model scenarios, or input features, contribute to 56 % of variance reduction in the estimation of maximum water level residuals. Following these results, we conclude that PB–ML models are a feasible alternative for quantifying cascading uncertainty in CF modeling. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TXXDsW96LCBEYXZpZCBGLg==|https://frl.publisso.de/adhoc/uri/TW9mdGFraGFyaSwgSGFtZWQ=|https://frl.publisso.de/adhoc/uri/TW9yYWRraGFuaSwgSGFtaWQ=
1000 Hinweis
  • DeepGreen-ID: 02227af78d334c7cb7980b0adfc2bbbc ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Directorate for Geosciences |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Directorate for Geosciences |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6488082.rdf
1000 Erstellt am 2024-10-03T09:55:16.177+0200
1000 Erstellt von 322
1000 beschreibt frl:6488082
1000 Zuletzt bearbeitet 2024-10-04T16:17:51.669+0200
1000 Objekt bearb. Fri Oct 04 16:17:51 CEST 2024
1000 Vgl. frl:6488082
1000 Oai Id
  1. oai:frl.publisso.de:frl:6488082 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source