Download
13014_2024_Article_2428.pdf 2,06MB
WeightNameValue
1000 Titel
  • “sCT-Feasibility” - a feasibility study for deep learning-based MRI-only brain radiotherapy
1000 Autor/in
  1. Grigo, Johanna |
  2. Szkitsak, Juliane |
  3. Höfler, Daniel |
  4. Fietkau, Rainer |
  5. Putz, Florian |
  6. Bert, Christoph |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-08
1000 Erschienen in
1000 Quellenangabe
  • 19(1):33
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13014-024-02428-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924348/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Radiotherapy (RT) is an important treatment modality for patients with brain malignancies. Traditionally, computed tomography (CT) images are used for RT treatment planning whereas magnetic resonance imaging (MRI) images are used for tumor delineation. Therefore, MRI and CT need to be registered, which is an error prone process. The purpose of this clinical study is to investigate the clinical feasibility of a deep learning-based MRI-only workflow for brain radiotherapy, that eliminates the registration uncertainty through calculation of a synthetic CT (sCT) from MRI data.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A total of 54 patients with an indication for radiation treatment of the brain and stereotactic mask immobilization will be recruited. All study patients will receive standard therapy and imaging including both CT and MRI. All patients will receive dedicated RT-MRI scans in treatment position. An sCT will be reconstructed from an acquired MRI DIXON-sequence using a commercially available deep learning solution on which subsequent radiotherapy planning will be performed. Through multiple quality assurance (QA) measures and reviews during the course of the study, the feasibility of an MRI-only workflow and comparative parameters between sCT and standard CT workflow will be investigated holistically. These QA measures include feasibility and quality of image guidance (IGRT) at the linear accelerator using sCT derived digitally reconstructed radiographs in addition to potential dosimetric deviations between the CT and sCT plan. The aim of this clinical study is to establish a brain MRI-only workflow as well as to identify risks and QA mechanisms to ensure a safe integration of deep learning-based sCT into radiotherapy planning and delivery.</jats:p> </jats:sec><jats:sec> <jats:title>Discussion</jats:title> <jats:p>Compared to CT, MRI offers a superior soft tissue contrast without additional radiation dose to the patients. However, up to now, even though the dosimetrical equivalence of CT and sCT has been shown in several retrospective studies, MRI-only workflows have still not been widely adopted. The present study aims to determine feasibility and safety of deep learning-based MRI-only radiotherapy in a holistic manner incorporating the whole radiotherapy workflow.</jats:p> </jats:sec><jats:sec> <jats:title>Trial registration</jats:title> <jats:p>NCT06106997.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Brain Neoplasms/radiotherapy [MeSH]
lokal Brain/diagnostic imaging [MeSH]
lokal Deep Learning [MeSH]
lokal Study Protocol
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Retrospective Studies [MeSH]
lokal MRI
lokal Synthetic CT
lokal MRI-only workflow
lokal Feasibility Studies [MeSH]
lokal Radiotherapy Planning, Computer-Assisted/methods [MeSH]
lokal MRonly
lokal Magnetic Resonance Imaging/methods [MeSH]
lokal Radiotherapy Dosage [MeSH]
lokal Brain Neoplasms/diagnostic imaging [MeSH]
lokal Deep learning
lokal Radiotherapy, Intensity-Modulated/methods [MeSH]
lokal sCT
lokal Radiotherapy
lokal Stereotactic radiotherapy
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/R3JpZ28sIEpvaGFubmE=|https://frl.publisso.de/adhoc/uri/U3praXRzYWssIEp1bGlhbmU=|https://frl.publisso.de/adhoc/uri/SMO2ZmxlciwgRGFuaWVs|https://frl.publisso.de/adhoc/uri/RmlldGthdSwgUmFpbmVy|https://frl.publisso.de/adhoc/uri/UHV0eiwgRmxvcmlhbg==|https://frl.publisso.de/adhoc/uri/QmVydCwgQ2hyaXN0b3Bo
1000 Hinweis
  • DeepGreen-ID: 77bdae48a95e499db919c6a2bed91259 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Erlangen |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Erlangen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6508735.rdf
1000 Erstellt am 2025-02-06T18:15:12.095+0100
1000 Erstellt von 322
1000 beschreibt frl:6508735
1000 Zuletzt bearbeitet 2025-09-14T01:51:16.590+0200
1000 Objekt bearb. Sun Sep 14 01:51:16 CEST 2025
1000 Vgl. frl:6508735
1000 Oai Id
  1. oai:frl.publisso.de:frl:6508735 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source