Download
13244_2024_Article_1836.pdf 1,61MB
WeightNameValue
1000 Titel
  • Software-assisted structured reporting and semi-automated TNM classification for NSCLC staging in a multicenter proof of concept study
1000 Autor/in
  1. Heimer, Maurice |
  2. Dikhtyar, Yevgeniy |
  3. Hoppe, Boj F. |
  4. Herr, Felix L. |
  5. Stüber, Anna Theresa |
  6. Burkard, Tanja |
  7. Zöller, Emma |
  8. Fabritius, Matthias P. |
  9. Unterrainer, Lena |
  10. Adams, Lisa |
  11. Thurner, Annette |
  12. Kaufmann, David |
  13. Trzaska, Timo |
  14. Kopp, Markus |
  15. Hamer, Okka |
  16. Maurer, Katharina |
  17. Ristow, Inka |
  18. May, Matthias S. |
  19. Tufman, Amanda |
  20. Spiro, Judith |
  21. Brendel, Matthias |
  22. Ingrisch, Michael |
  23. Ricke, Jens |
  24. Cyran, Clemens C. |
1000 Verlag Springer Vienna
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-28
1000 Erschienen in
1000 Quellenangabe
  • 15(1):258
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13244-024-01836-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519274/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Objectives</jats:title> <jats:p>In this multi-center study, we proposed a structured reporting (SR) framework for non-small cell lung cancer (NSCLC) and developed a software-assisted tool to automatically translate image-based findings and annotations into TNM classifications. The aim of this study was to validate the software-assisted SR tool for NSCLC, assess its potential clinical impact in a proof-of-concept study, and evaluate current reporting standards in participating institutions.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A framework for SR and staging of NSCLC was developed in a multi-center collaboration. SR annotations and descriptions were used to generate semi-automated TNM classification. The SR and TNM classification tools were evaluated by nine radiologists on <jats:italic>n</jats:italic> = 20 representative [18F]FDG PET/CT studies and compared to the free text reporting (FTR) strategy. Results were compared to a multidisciplinary team reference using a generalized linear mixed model (GLMM). Additionally, participants were surveyed on their experience with SR and TNM classification.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Overall, GLMM analysis revealed that readers using SR were 1.707 (CI: 1.137–2.585) times more likely to correctly classify TNM status compared to FTR strategy (<jats:italic>p</jats:italic> = 0.01) resulting in increased overall TNM correctness in 71.9% (128/178) of cases compared to 62.8% (113/180) FTR. The primary source of variation in classification accuracy was explained by case complexity. Participants rated the potential impact of SR and semi-automated TNM classification as positive across all categories with improved scores after template validation.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>This multi-center study yielded an effective software-assisted SR framework for NSCLC. The SR and semi-automated classification tool improved TNM classification and were perceived as valuable.</jats:p> </jats:sec><jats:sec> <jats:title>Critical relevance statement</jats:title> <jats:p>Software-assisted SR provides robust input for semi-automated rule-based TNM classification in non-small-cell lung carcinoma (NSCLC), improves TNM correctness compared to FTR, and was perceived as valuable by radiology physicians.</jats:p> </jats:sec><jats:sec> <jats:title>Key Points</jats:title> <jats:p><jats:list list-type='bullet'> <jats:list-item> <jats:p>SR and TNM classification are underutilized across participating centers for NSCLC staging.</jats:p> </jats:list-item> <jats:list-item> <jats:p>Software-assisted SR has emerged as a promising strategy for oncologic assessment.</jats:p> </jats:list-item> <jats:list-item> <jats:p>Software-assisted SR facilitates semi-automated TNM classification with improved staging accuracy compared to free-text reports in NSCLC.</jats:p> </jats:list-item> </jats:list></jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Original Article
lokal PET-CT
lokal Non-small-cell lung carcinoma
lokal TNM classification
lokal Lung
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0940-0161|https://frl.publisso.de/adhoc/uri/RGlraHR5YXIsIFlldmdlbml5|https://frl.publisso.de/adhoc/uri/SG9wcGUsIEJvaiBGLg==|https://frl.publisso.de/adhoc/uri/SGVyciwgRmVsaXggTC4=|https://frl.publisso.de/adhoc/uri/U3TDvGJlciwgQW5uYSBUaGVyZXNh|https://frl.publisso.de/adhoc/uri/QnVya2FyZCwgVGFuamE=|https://frl.publisso.de/adhoc/uri/WsO2bGxlciwgRW1tYQ==|https://frl.publisso.de/adhoc/uri/RmFicml0aXVzLCBNYXR0aGlhcyBQLg==|https://frl.publisso.de/adhoc/uri/VW50ZXJyYWluZXIsIExlbmE=|https://frl.publisso.de/adhoc/uri/QWRhbXMsIExpc2E=|https://frl.publisso.de/adhoc/uri/VGh1cm5lciwgQW5uZXR0ZQ==|https://frl.publisso.de/adhoc/uri/S2F1Zm1hbm4sIERhdmlk|https://frl.publisso.de/adhoc/uri/VHJ6YXNrYSwgVGltbw==|https://frl.publisso.de/adhoc/uri/S29wcCwgTWFya3Vz|https://frl.publisso.de/adhoc/uri/SGFtZXIsIE9ra2E=|https://frl.publisso.de/adhoc/uri/TWF1cmVyLCBLYXRoYXJpbmE=|https://frl.publisso.de/adhoc/uri/UmlzdG93LCBJbmth|https://frl.publisso.de/adhoc/uri/TWF5LCBNYXR0aGlhcyBTLg==|https://frl.publisso.de/adhoc/uri/VHVmbWFuLCBBbWFuZGE=|https://frl.publisso.de/adhoc/uri/U3Bpcm8sIEp1ZGl0aA==|https://frl.publisso.de/adhoc/uri/QnJlbmRlbCwgTWF0dGhpYXM=|https://frl.publisso.de/adhoc/uri/SW5ncmlzY2gsIE1pY2hhZWw=|https://frl.publisso.de/adhoc/uri/Umlja2UsIEplbnM=|https://frl.publisso.de/adhoc/uri/Q3lyYW4sIENsZW1lbnMgQy4=
1000 Hinweis
  • DeepGreen-ID: 06802d02260b4457a9b4d208a2ef27ed ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6519337.rdf
1000 Erstellt am 2025-07-05T17:14:28.203+0200
1000 Erstellt von 322
1000 beschreibt frl:6519337
1000 Zuletzt bearbeitet 2025-08-14T07:59:08.642+0200
1000 Objekt bearb. Thu Aug 14 07:59:08 CEST 2025
1000 Vgl. frl:6519337
1000 Oai Id
  1. oai:frl.publisso.de:frl:6519337 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source