Download
00330_2023_Article_10095.pdf 1,10MB
WeightNameValue
1000 Titel
  • Towards reproducible radiomics research: introduction of a database for radiomics studies
1000 Autor/in
  1. Akinci D’Antonoli, Tugba |
  2. Cuocolo, Renato |
  3. Baessler, Bettina |
  4. Pinto dos Santos, Daniel |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-08-12
1000 Erschienen in
1000 Quellenangabe
  • 34(1):436-443
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-023-10095-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791815/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Objectives</jats:title> <jats:p>To investigate the model-, code-, and data-sharing practices in the current radiomics research landscape and to introduce a radiomics research database.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A total of 1254 articles published between January 1, 2021, and December 31, 2022, in leading radiology journals (<jats:italic>European Radiology</jats:italic>, <jats:italic>European Journal of Radiology</jats:italic>, <jats:italic>Radiology</jats:italic>, <jats:italic>Radiology: Artificial Intelligence</jats:italic>, <jats:italic>Radiology: Cardiothoracic Imaging</jats:italic>, <jats:italic>Radiology: Imaging Cancer</jats:italic>) were retrospectively screened, and 257 original research articles were included in this study. The categorical variables were compared using Fisher’s exact tests or chi-square test and numerical variables using Student’s <jats:italic>t</jats:italic> test with relation to the year of publication.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Half of the articles (128 of 257) shared the model by either including the final model formula or reporting the coefficients of selected radiomics features. A total of 73 (28%) models were validated on an external independent dataset. Only 16 (6%) articles shared the data or used publicly available open datasets. Similarly, only 20 (7%) of the articles shared the code. A total of 7 (3%) articles both shared code and data. All collected data in this study is presented in a radiomics research database (<jats:italic>RadBase</jats:italic>) and could be accessed at <jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' ext-link-type='uri' xlink:href='https://github.com/EuSoMII/RadBase'>https://github.com/EuSoMII/RadBase</jats:ext-link>.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>According to the results of this study, the majority of published radiomics models were not technically reproducible since they shared neither model nor code and data. There is still room for improvement in carrying out reproducible and open research in the field of radiomics.</jats:p> </jats:sec><jats:sec> <jats:title>Clinical relevance statement</jats:title> <jats:p>To date, the reproducibility of radiomics research and open science practices within the radiomics research community are still very low. Ensuring reproducible radiomics research with model-, code-, and data-sharing practices will facilitate faster clinical translation.</jats:p> </jats:sec><jats:sec> <jats:title>Key Points</jats:title> <jats:p><jats:italic>• There is a discrepancy between the number of published radiomics papers and the clinical implementation of these published radiomics models.</jats:italic></jats:p> <jats:p><jats:italic>• The main obstacle to clinical implementation is the lack of model-, code-, and data-sharing practices.</jats:italic></jats:p> <jats:p><jats:italic>• In order to translate radiomics research into clinical practice, the radiomics research community should adopt open science practices.</jats:italic></jats:p> </jats:sec>
1000 Sacherschließung
lokal Radiomics
lokal Imaging Informatics and Artificial Intelligence
lokal Radiography [MeSH]
lokal Reproducibility of Results [MeSH]
lokal Reproducibility of results
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Multiomics
lokal Radiomics [MeSH]
lokal Retrospective Studies [MeSH]
lokal Artificial Intelligence [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QWtpbmNpIETigJlBbnRvbm9saSwgVHVnYmE=|https://frl.publisso.de/adhoc/uri/Q3VvY29sbywgUmVuYXRv|https://frl.publisso.de/adhoc/uri/QmFlc3NsZXIsIEJldHRpbmE=|https://frl.publisso.de/adhoc/uri/UGludG8gZG9zIFNhbnRvcywgRGFuaWVs
1000 Hinweis
  • DeepGreen-ID: 5e1495e73eb54aebac4da9f0be906c2a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universität Basel |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universität Basel |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6522396.rdf
1000 Erstellt am 2025-07-06T14:31:50.801+0200
1000 Erstellt von 322
1000 beschreibt frl:6522396
1000 Zuletzt bearbeitet 2025-07-31T16:03:46.982+0200
1000 Objekt bearb. Thu Jul 31 16:03:46 CEST 2025
1000 Vgl. frl:6522396
1000 Oai Id
  1. oai:frl.publisso.de:frl:6522396 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source