Download
Schmid-et-al_2020_Discrete-time survival forests with Hellinger distance decision trees.pdf 891,40KB
WeightNameValue
1000 Titel
  • Discrete-time survival forests with Hellinger distance decision trees
1000 Autor/in
  1. Schmid, Matthias |
  2. Welchowski, Thomas |
  3. Wright, Marvin |
  4. Berger, Moritz |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-03-14
1000 Erschienen in
1000 Quellenangabe
  • 34(3):812-832
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10618-020-00682-z |
1000 Ergänzendes Material
  • https://link.springer.com/article/10.1007/s10618-020-00682-z#Sec14 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Random survival forests (RSF) are a powerful nonparametric method for building prediction models with a time-to-event outcome. RSF do not rely on the proportional hazards assumption and can be readily applied to both low- and higher-dimensional data. A remaining limitation of RSF, however, arises from the fact that the method is almost entirely focussed on continuously measured event times. This issue may become problematic in studies where time is measured on a discrete scale t=1,2,..., referring to time intervals [0,a1),[a1,a2),…. In this situation, the application of methods designed for continuous time-to-event data may lead to biased estimators and inaccurate predictions if discreteness is ignored. To address this issue, we develop a RSF algorithm that is specifically designed for the analysis of (possibly right-censored) discrete event times. The algorithm is based on an ensemble of discrete-time survival trees that operate on transformed versions of the original time-to-event data using tree methods for binary classification. As the outcome variable in these trees is typically highly imbalanced, our algorithm implements a node splitting strategy based on Hellinger’s distance, which is a skew-insensitive alternative to classical split criteria such as the Gini impurity. The new algorithm thus provides flexible nonparametric predictions of individual-specific discrete hazard and survival functions. Our numerical results suggest that node splitting by Hellinger’s distance improves predictive performance when compared to the Gini impurity. Furthermore, discrete-time RSF improve prediction accuracy when compared to RSF approaches treating discrete event times as continuous in situations where the number of time intervals is small.
1000 Sacherschließung
lokal Survival analysis
lokal Hellinger’s distance
lokal Discrete event times
lokal Recursive partitioning
lokal Class imbalance
lokal Random survival forests
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0788-0317|https://frl.publisso.de/adhoc/uri/V2VsY2hvd3NraSwgVGhvbWFz|https://orcid.org/0000-0002-8542-6291|https://frl.publisso.de/adhoc/uri/QmVyZ2VyLCBNb3JpdHo=
1000 Label
1000 Förderer
  1. Projekt DEAL |
  2. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. -
  2. SCHM 2966/2-1
1000 Förderprogramm
  1. Open Access funding
  2. -
1000 Dateien
  1. Discrete-time survival forests with Hellinger distance decision trees
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Projekt DEAL |
    1000 Förderprogramm Open Access funding
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer SCHM 2966/2-1
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6426126.rdf
1000 Erstellt am 2021-03-10T15:06:53.059+0100
1000 Erstellt von 266
1000 beschreibt frl:6426126
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2021-03-11T12:56:06.215+0100
1000 Objekt bearb. Thu Mar 11 12:55:50 CET 2021
1000 Vgl. frl:6426126
1000 Oai Id
  1. oai:frl.publisso.de:frl:6426126 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source