Download
Agronomy Journal - 2022 - Rosso - Comparison of plant proximal sensing approaches for nitrogen supply detection in crops.pdf 1,25MB
WeightNameValue
1000 Titel
  • Comparison of plant proximal sensing approaches for nitrogen supply detection in crops
1000 Autor/in
  1. Rosso, Pablo |
  2. Wallor, Evelyn |
  3. Richter, Lars |
  4. Wehrhan, Marc |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-08-22
1000 Erschienen in
1000 Quellenangabe
  • 114(6):3317-3328
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/agj2.21189 |
1000 Ergänzendes Material
  • https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21189#support-information-section |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Nondestructive proximal sensors can be an efficient source of information of N status in crops for localized and rapid adjustment of fertilization applications. The aim of this study was to compare two transmittance/reflectance-based sensors (SPAD, ASD) and a florescence-based sensor (Multiplex) in their ability to measure N content in corn (Zea mays L.), spring and winter barley (Hordeum vulgare L.), and rye (Secale cereale L.), both at the leaf and canopy level. Measurements of leaves and canopies from six fertilization field trials in 2019 and 2020 were analyzed to establish relationships between sensor information and laboratory-determined N content in crops. Analyses included linear regression for single sensor variables and machine learning for multivariate approaches, to assess the relative accuracy of the proximal sensors to measure N. The ASD is time-intensive and requires post hoc analyses of the spectra. However, the spectral outputs of this device were clearly correlated with the N status of leaves and canopies. At the leaf level, SPAD showed higher accuracy than any of the single Multiplex variables to predict plant N. Multiplex performance could be improved by combining three of its variables. At the canopy level, interpolated SPAD values and the best-performing Multiplex variables showed similar accuracy. It could be concluded that the relationship sensor-N status is species specific. Despite the high standard deviation recorded in some raw Multiplex variable, the derived indices showed a comparable low standard deviation. At both, leaf and canopy levels an integrated sensor solution would combine the multidimensionality of Multiplex and ASD, and the accuracy and practicality of SPAD.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0184-2723|https://orcid.org/0000-0002-1749-097X|https://frl.publisso.de/adhoc/uri/UmljaHRlciwgTGFycw==|https://frl.publisso.de/adhoc/uri/V2VocmhhbiwgTWFyYw==
1000 Label
1000 Förderer
  1. EIT Climate-KIC |
  2. Bundesministerium für Bildung und Forschung |
  3. Leibniz Centre for Agricultural Research |
1000 Fördernummer
  1. 190499
  2. 031A564J
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
  1. Comparison of plant proximal sensing approaches for nitrogen supply detection in crops
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer EIT Climate-KIC |
    1000 Förderprogramm -
    1000 Fördernummer 190499
  2. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer 031A564J
  3. 1000 joinedFunding-child
    1000 Förderer Leibniz Centre for Agricultural Research |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6439246.rdf
1000 Erstellt am 2023-01-04T08:54:41.675+0100
1000 Erstellt von 317
1000 beschreibt frl:6439246
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-01-04T08:55:59.686+0100
1000 Objekt bearb. Wed Jan 04 08:55:44 CET 2023
1000 Vgl. frl:6439246
1000 Oai Id
  1. oai:frl.publisso.de:frl:6439246 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source