Download
Journal of Sleep Research - 2022 - Hassan - Automated real‐time EEG sleep spindle detection for brain‐state‐dependent brain.pdf 1,70MB
WeightNameValue
1000 Titel
  • Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation
1000 Autor/in
  1. Hassan, Umair |
  2. Feld, Gordon B. |
  3. Bergmann, Til Ole |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-09-21
1000 Erschienen in
1000 Quellenangabe
  • 31(6):e13733
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1111/jsr.13733 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Sleep spindles are a hallmark electroencephalographic feature of non-rapid eye movement sleep, and are believed to be instrumental for sleep-dependent memory reactivation and consolidation. However, direct proof of their causal relevance is hard to obtain, and our understanding of their immediate neurophysiological consequences is limited. To investigate their causal role, spindles need to be targeted in real-time with sensory or non-invasive brain-stimulation techniques. While fully automated offline detection algorithms are well established, spindle detection in real-time is highly challenging due to their spontaneous and transient nature. Here, we present the real-time spindle detector, a robust multi-channel electroencephalographic signal-processing algorithm that enables the automated triggering of stimulation during sleep spindles in a phase-specific manner. We validated the real-time spindle detection method by streaming pre-recorded sleep electroencephalographic datasets to a real-time computer system running a Simulink® Real-Time™ implementation of the algorithm. Sleep spindles were detected with high levels of Sensitivity (~83%), Precision (~78%) and a convincing F1-Score (~81%) in reference to state-of-the-art offline algorithms (which reached similar or lower levels when compared with each other), for both naps and full nights, and largely independent of sleep scoring information. Detected spindles were comparable in frequency, duration, amplitude and symmetry, and showed the typical time–frequency characteristics as well as a centroparietal topography. Spindles were detected close to their centre and reliably at the predefined target phase. The real-time spindle detection algorithm therefore empowers researchers to target spindles during human sleep, and apply the stimulation method and experimental paradigm of their choice.
1000 Sacherschließung
lokal electroencephalographic triggered stimulation
lokal transcranial magnetic stimulation
lokal closed loop
lokal spindle cycle detection
lokal non-invasive brain stimulation
lokal spindle phase triggered
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8245-0061|https://frl.publisso.de/adhoc/uri/RmVsZCwgR29yZG9uIEIu|https://frl.publisso.de/adhoc/uri/QmVyZ21hbm4sIFRpbCBPbGU=
1000 Label
1000 Förderer
  1. Boehringer Ingelheim Stiftung |
  2. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. -
  2. 362546008
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
  1. Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Boehringer Ingelheim Stiftung |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer 362546008
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6440576.rdf
1000 Erstellt am 2023-03-07T08:47:32.679+0100
1000 Erstellt von 317
1000 beschreibt frl:6440576
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-03-07T08:49:10.038+0100
1000 Objekt bearb. Tue Mar 07 08:48:14 CET 2023
1000 Vgl. frl:6440576
1000 Oai Id
  1. oai:frl.publisso.de:frl:6440576 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source