Download
Deep_Learning_Improves_Point_Density_in_PS-InSAR_Data_Toward_Finer-Scale_Land_Surface_Displacement_Detection.pdf 1,36MB
WeightNameValue
1000 Titel
  • Deep Learning Improves Point Density in PS-InSAR Data Toward Finer-Scale Land Surface Displacement Detection
1000 Autor/in
  1. Safonova, Anastasiia |
  2. Ryo, Masahiro |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-12
1000 Erschienen in
1000 Quellenangabe
  • 12:132754 -132762
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1109/ACCESS.2024.3459099 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The permanent scatterer interferometric aperture radar (PS-InSAR) technique is used to measure and monitor displacements of the Earth’s surface over time. While the approach is promising for large-scale deformation, the density of the received PS points is insufficient for localized deformation analysis. In this first work, we aim to improve the technique by increasing the point density of high-precision deformation monitoring in PS-InSAR data by developing a convolutional long short-term memory (ConvLSTM) model that predicts PS points on different land covers, such as forest, urban, natural, water, and combinations among them. The proposed architecture, PS-ConvLSTM, was trained on a temporary dataset with interferograms to classify stable and unstable PS pixels from over 200,000 site images obtained from the city of Barcelona, Spain. The result showed that the trained PS-ConvLSTM model is highly compatible with the method currently used, which requires a large manual effort by an expert (accuracy: 99%). In addition, the proposed approach increased the point density by 15%, indicating that ConvLSTM is a promising approach for increasing the point density in PS-InSAR data and thus improving localized deformation analysis.
1000 Sacherschließung
lokal long short-term memory
lokal point density
lokal persistent scatter
lokal InSAR process
lokal Deep learning
lokal recurrent neural network
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3290-2717|https://orcid.org/0000-0002-5271-3446
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Deep Learning Improves Point Density in PS-InSAR Data Toward Finer-Scale Land Surface Displacement Detection
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6490231.rdf
1000 Erstellt am 2025-02-03T10:46:15.129+0100
1000 Erstellt von 333
1000 beschreibt frl:6490231
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-06-10T12:38:48.246+0200
1000 Objekt bearb. Tue Jun 10 12:38:41 CEST 2025
1000 Vgl. frl:6490231
1000 Oai Id
  1. oai:frl.publisso.de:frl:6490231 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source