Download
journal.pone.0320414.pdf 4,67MB
WeightNameValue
1000 Titel
  • Separated or joint models of repeated multivariate data to estimate individuals’ disease trajectories with application to scleroderma
1000 Autor/in
  1. Kim, Ji Soo |
  2. Shah, Ami A. |
  3. Hummers, Laura K. |
  4. Zeger, Scott L. |
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-04-21
1000 Erschienen in
1000 Quellenangabe
  • 20(4):e0320414
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0320414 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011310/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Estimating a patient’s disease trajectory as defined by clinical measures is an essential task in medicine. Given multiple biomarkers, there is a practical choice of whether to estimate the joint distribution of all biomarkers in a single model or to model the univariate marginal distribution of each marker separately ignoring the covariance structure among measures. To fully utilize all trajectory-relevant information in multiple longitudinal markers, a joint model is required, but its complexity and computational burden may only be warranted when joint estimates of trajectories are substantially more efficient than separate estimates. This paper derives general expressions for the inefficiency of univariate or “separated" estimates of population-average trajectories and individual’s random effects as compared to the fully efficient multivariate or “combined" estimates. Then, in two settings: (1) a general bivariate case; and (2) our motivating clinical case study with 5 measures, we find that separated estimates of fixed effects are nearly fully efficient. However, joint estimates of random effects can be meaningfully more efficient for measures with substantial missing data when other strongly correlated measures are observed more frequently. This increased efficiency of the joint model derives more from joint shrinkage of random effects in multivariate space than from improved estimates of the subject-specific trajectories obtained when accounting for correlations in measurements. These findings have application to a diverse array of chronic diseases where biomarkers’ trajectories guide clinical decisions.
1000 Sacherschließung
lokal Biomarkers
lokal Vector spaces
lokal Scleroderma
lokal Statistical distributions
lokal Autoimmune diseases
lokal Pulmonary function
lokal Time measurement
lokal Covariance
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-4849-4930|https://frl.publisso.de/adhoc/uri/U2hhaCwgQW1pIEEu|https://frl.publisso.de/adhoc/uri/SHVtbWVycywgTGF1cmEgSy4=|https://frl.publisso.de/adhoc/uri/WmVnZXIsIFNjb3R0IEwu
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. https://doi.org/10.13039/100015629 |
  2. Johns Hopkins inHealth initiative |
  3. https://doi.org/10.13039/100001845 |
  4. Nancy and Joachim Bechtle Precision Medicine Fund for Scleroderma |
  5. Manugian Family Scholar |
  6. Chresanthe Staurulakis Memorial Fund |
  7. https://doi.org/10.13039/100000069 |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
  5. -
  6. -
  7. P30AR070254;R01AR073208;K24AR080217
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. -
  6. -
  7. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100015629 |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Johns Hopkins inHealth initiative |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100001845 |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Nancy and Joachim Bechtle Precision Medicine Fund for Scleroderma |
    1000 Förderprogramm -
    1000 Fördernummer -
  5. 1000 joinedFunding-child
    1000 Förderer Manugian Family Scholar |
    1000 Förderprogramm -
    1000 Fördernummer -
  6. 1000 joinedFunding-child
    1000 Förderer Chresanthe Staurulakis Memorial Fund |
    1000 Förderprogramm -
    1000 Fördernummer -
  7. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100000069 |
    1000 Förderprogramm -
    1000 Fördernummer P30AR070254;R01AR073208;K24AR080217
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6511290.rdf
1000 Erstellt am 2025-05-12T14:31:21.219+0200
1000 Erstellt von 337
1000 beschreibt frl:6511290
1000 Bearbeitet von 337
1000 Zuletzt bearbeitet 2025-08-26T13:57:12.521+0200
1000 Objekt bearb. Mon May 12 14:32:19 CEST 2025
1000 Vgl. frl:6511290
1000 Oai Id
  1. oai:frl.publisso.de:frl:6511290 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source