Download
41512_2024_Article_182.pdf 1,99MB
WeightNameValue
1000 Titel
  • Risk prediction tools for pressure injury occurrence: an umbrella review of systematic reviews reporting model development and validation methods
1000 Autor/in
  1. Hillier, Bethany |
  2. Scandrett, Katie |
  3. Coombe, April |
  4. Hernandez-Boussard, Tina |
  5. Steyerberg, Ewout |
  6. Takwoingi, Yemisi |
  7. Velickovic, Vladica |
  8. Dinnes, Jacqueline |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-01-14
1000 Erschienen in
1000 Quellenangabe
  • 9(1):2
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s41512-024-00182-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730812/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title> <jats:sec> <jats:title>Background</jats:title> <jats:p>Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility.</jats:p> <jats:p>Our objectives were to identify and describe available risk prediction tools for PI occurrence, their content and the development and validation methods used.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods</jats:title> <jats:p>The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL, EPISTEMONIKOS, Google Scholar, and reference lists were searched to identify relevant systematic reviews. The risk of bias was assessed using adapted AMSTAR-2 criteria. Results were described narratively. All included reviews contributed to building a comprehensive list of risk prediction tools.</jats:p> </jats:sec> <jats:sec> <jats:title>Results</jats:title> <jats:p>We identified 32 eligible systematic reviews only seven of which described the development and validation of risk prediction tools for PI. Nineteen reviews assessed the prognostic accuracy of the tools and 11 assessed clinical effectiveness. Of the seven reviews reporting model development and validation, six included only machine learning models. Two reviews included external validations of models, although only one review reported any details on external validation methods or results. This was also the only review to report measures of both discrimination and calibration. Five reviews presented measures of discrimination, such as the area under the curve (AUC), sensitivities, specificities, F1 scores, and G-means. For the four reviews that assessed the risk of bias assessment using the PROBAST tool, all models but one were found to be at high or unclear risk of bias.</jats:p> </jats:sec> <jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Available tools do not meet current standards for the development or reporting of risk prediction models. The majority of tools have not been externally validated. Standardised and rigorous approaches to risk prediction model development and validation are needed.</jats:p> </jats:sec> <jats:sec> <jats:title>Trial registration</jats:title> <jats:p>The protocol was registered on the Open Science Framework (<jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' xlink:href='https://osf.io/tepyk' ext-link-type='uri'>https://osf.io/tepyk</jats:ext-link>).</jats:p> </jats:sec>
1000 Sacherschließung
lokal Development
lokal Overview
lokal External validation
lokal Internal
lokal Pressure injury
lokal Review
lokal Ulcer
lokal Prognostic
lokal Prediction
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SGlsbGllciwgQmV0aGFueQ==|https://frl.publisso.de/adhoc/uri/U2NhbmRyZXR0LCBLYXRpZQ==|https://frl.publisso.de/adhoc/uri/Q29vbWJlLCBBcHJpbA==|https://frl.publisso.de/adhoc/uri/SGVybmFuZGV6LUJvdXNzYXJkLCBUaW5h|https://frl.publisso.de/adhoc/uri/U3RleWVyYmVyZywgRXdvdXQ=|https://frl.publisso.de/adhoc/uri/VGFrd29pbmdpLCBZZW1pc2k=|https://frl.publisso.de/adhoc/uri/VmVsaWNrb3ZpYywgVmxhZGljYQ==|https://orcid.org/0000-0003-1343-7335
1000 Hinweis
  • DeepGreen-ID: b6183af86e2e42bbbc644b43ea85d8a4 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Paul Hartmann AG |
  2. Birmingham Biomedical Research Centre |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Paul Hartmann AG |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Birmingham Biomedical Research Centre |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6520431.rdf
1000 Erstellt am 2025-07-06T00:53:47.575+0200
1000 Erstellt von 322
1000 beschreibt frl:6520431
1000 Zuletzt bearbeitet 2025-08-06T10:12:50.904+0200
1000 Objekt bearb. Wed Aug 06 10:12:50 CEST 2025
1000 Vgl. frl:6520431
1000 Oai Id
  1. oai:frl.publisso.de:frl:6520431 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source