Download
Behning-et-al_2024_Random survival forests with competing events.pdf 1,31MB
WeightNameValue
1000 Titel
  • Random survival forests with competing events: A subdistribution-based imputation approach
1000 Autor/in
  1. Behning, Charlotte |
  2. Bigerl, Alexander |
  3. Wright, Marvin N. |
  4. Sekula, Peggy |
  5. Berger, Moritz |
  6. Schmid, Matthias |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-20
1000 Erschienen in
1000 Quellenangabe
  • 66(6):e202400014
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/bimj.202400014 |
  • https://pubmed.ncbi.nlm.nih.gov/39162087/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real-world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.
1000 Sacherschließung
lokal Subdistribution hazard
lokal Imputation
lokal Random survival forest
lokal Competing events
lokal Discrete time-to-event data
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-9310-3804|https://frl.publisso.de/adhoc/uri/QmlnZXJsLCBBbGV4YW5kZXI=|https://orcid.org/0000-0002-8542-6291|https://frl.publisso.de/adhoc/uri/U2VrdWxhLCBQZWdneQ==|https://frl.publisso.de/adhoc/uri/QmVyZ2VyLCBNb3JpdHo=|https://frl.publisso.de/adhoc/uri/U2NobWlkLCBNYXR0aGlhcw==
1000 Label
1000 Förderer
  1. https://doi.org/10.13039/501100001659 |
  2. https://doi.org/10.13039/501100002347 |
  3. https://doi.org/10.13039/501100016118 |
1000 Fördernummer
  1. 437611051
  2. 01ER0804
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
  1. Random survival forests with competing events: A subdistribution-based imputation approach
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100001659 |
    1000 Förderprogramm -
    1000 Fördernummer 437611051
  2. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100002347 |
    1000 Förderprogramm -
    1000 Fördernummer 01ER0804
  3. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100016118 |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6525010.rdf
1000 Erstellt am 2025-07-11T14:16:35.136+0200
1000 Erstellt von 266
1000 beschreibt frl:6525010
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-08-01T10:43:44.571+0200
1000 Objekt bearb. Fri Aug 01 10:43:34 CEST 2025
1000 Vgl. frl:6525010
1000 Oai Id
  1. oai:frl.publisso.de:frl:6525010 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source