Download
s11571-025-10289-z.pdf 2,64MB
WeightNameValue
1000 Titel
  • Linear modeling of brain activity during selective attention to continuous speech: the critical role of the N1 effect in event-related potentials to acoustic edges
1000 Autor/in
  1. Mai, Adrian |
  2. Hillyard, Steven |
  3. Strauss, Daniel J. |
1000 Erscheinungsjahr 2025
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-07-02
1000 Erschienen in
1000 Quellenangabe
  • 19(1):110
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11571-025-10289-z |
  • https://pmc.ncbi.nlm.nih.gov/articles/PMC12222594/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Recent studies have suggested a cortical representation of speech through superposition of evoked responses to acoustic edges, an idea closely related to regression-based modeling approaches for studying cortical synchronization to speech via magneto- or electroencephalography (M/EEG). However, it is still unclear to what extent speech-evoked event-related potentials (ERPs) contribute to these techniques. The present study addressed this question by re-analyzing an EEG data set obtained during a selective auditory attention task in which participants focused on one of two competing speakers. Segmenting the EEG based on acoustic edges revealed ERPs with clear P1-N1-P2 complexes and enhanced N1 components elicited by attended streams (N1 effect). Comparisons between ERPs and regression results revealed that temporal response functions were highly similar spatiotemporally to the corresponding ERPs and that stimulus reconstruction accuracies were driven by a consistent enhancement of ERPs including the N1 effect. These observations point to a direct link between ERPs to acoustic edges in speech and the linear modeling techniques. In particular, the improvement in signal-to-noise ratio produced by consistent attention-related enhancements of the N1 component was found to be critical for achieving tracking of selectively attended speech, presumably facilitating the higher-order processing of the selected stream.
1000 Sacherschließung
lokal Temporal response functions
lokal Stimulus reconstruction
lokal Event-related potentials
lokal Selective auditory attention
lokal Speech tracking
lokal N1 effect
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0009-7238-5863|https://orcid.org/0009-0001-5531-2568|https://orcid.org/0000-0001-8481-499X
1000 Label
1000 Förderer
  1. European Regional Development Fund |
  2. State Chancellery Saarland |
  3. Projekt DEAL |
1000 Fördernummer
  1. EFRE-HS-0000835
  2. EFRE-HS-0000835
  3. -
1000 Förderprogramm
  1. -
  2. Center for Digital Neurotechnologies Saar (CDNS)
  3. Ooen Access funding
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Regional Development Fund |
    1000 Förderprogramm -
    1000 Fördernummer EFRE-HS-0000835
  2. 1000 joinedFunding-child
    1000 Förderer State Chancellery Saarland |
    1000 Förderprogramm Center for Digital Neurotechnologies Saar (CDNS)
    1000 Fördernummer EFRE-HS-0000835
  3. 1000 joinedFunding-child
    1000 Förderer Projekt DEAL |
    1000 Förderprogramm Ooen Access funding
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6525121.rdf
1000 Erstellt am 2025-07-23T10:37:59.235+0200
1000 Erstellt von 242
1000 beschreibt frl:6525121
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-09-12T15:03:01.581+0200
1000 Objekt bearb. Mon Aug 04 15:00:47 CEST 2025
1000 Vgl. frl:6525121
1000 Oai Id
  1. oai:frl.publisso.de:frl:6525121 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source