Download
jcm-14-05312.pdf 1,74MB
WeightNameValue
1000 Titel
  • Analyzing Heart Rate Variability for COVID-19 ICU Mortality Prediction Using Continuous Signal Processing Techniques
1000 Autor/in
  1. de Azevedo David, Guilherme |
  2. Lourenço, André |
  3. Von Rekowski, Cristiana |
  4. Pinto, Iola |
  5. Calado, Cecília |
  6. Bento, Luís |
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-07-28
1000 Erschienen in
1000 Quellenangabe
  • 14(15):5312
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/jcm14155312 |
1000 Ergänzendes Material
  • https://www.mdpi.com/article/10.3390/jcm14155312/s1 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND/OBJECTIVES: Heart rate variability (HRV) has been widely investigated as a predictor of disease and mortality across diverse patient populations; however, there remains no consensus on the optimal set or combination of time and frequency domain nor on nonlinear features for reliable prediction across clinical contexts. Given the relevance of the COVID-19 pandemic and the unique clinical profiles of these patients, this retrospective observational study explored the potential of HRV analysis for early prediction of in-hospital mortality using ECG signals recorded during the initial moments of ICU admission in COVID-19 patients. METHODS: HRV indices were extracted from four ECG leads (I, II, III, and aVF) using sliding windows of 2, 5, and 7 min across observation intervals of 15, 30, and 60 min. The raw data posed significant challenges in terms of structure, synchronization, and signal quality; thus, from an original set of 381 records from 321 patients, after data pre-processing steps, a final dataset of 82 patients was selected for analysis. To manage data complexity and evaluate predictive performance, two feature selection methods, four feature reduction techniques, and five classification models were applied to identify the optimal approach. RESULTS: Among the feature aggregation methods, compiling feature means across patient windows (Method D) yielded the best results, particularly for longer observation intervals (e.g., using LDA, the best AUC of 0.82±0.130.82±0.13 was obtained with Method D versus 0.63±0.090.63±0.09 with Method C using 5 min windows). Linear Discriminant Analysis (LDA) was the most consistent classification algorithm, demonstrating robust performance across various time windows and further improvement with dimensionality reduction. Although Gradient Boosting and Random Forest also achieved high AUCs and F1-scores, their performance outcomes varied across time intervals. CONCLUSIONS: These findings support the feasibility and clinical relevance of using short-term HRV as a noninvasive, data-driven tool for early risk stratification in critical care, potentially guiding timely therapeutic decisions in high-risk ICU patients and thereby reducing in-hospital mortality.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal mortality
lokal ICU
lokal HRV
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0005-3540-9636|https://orcid.org/0000-0001-8935-9578|https://orcid.org/0009-0009-6843-1935|https://orcid.org/0000-0002-2945-1441|https://orcid.org/0000-0002-5264-9755|https://frl.publisso.de/adhoc/uri/IEJlbnRvLCBMdcOtcw==
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. https://doi.org/10.13039/501100001871 |
  2. https://doi.org/10.54499/UIDB/00297/2020 |
  3. https://doi.org/10.54499/UIDP/00297/2020 |
  4. https://doi.org/10.54499/2023.01951.BD |
  5. https://doi.org/10.13039/501100021680 |
1000 Fördernummer
  1. DSAIPA/DS/0117/2020
  2. UIDB/00297/2020
  3. UIDP/00297/2020
  4. 2023.01951.BD
  5. UID/04516/NOVA
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100001871 |
    1000 Förderprogramm -
    1000 Fördernummer DSAIPA/DS/0117/2020
  2. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.54499/UIDB/00297/2020 |
    1000 Förderprogramm -
    1000 Fördernummer UIDB/00297/2020
  3. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.54499/UIDP/00297/2020 |
    1000 Förderprogramm -
    1000 Fördernummer UIDP/00297/2020
  4. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.54499/2023.01951.BD |
    1000 Förderprogramm -
    1000 Fördernummer 2023.01951.BD
  5. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100021680 |
    1000 Förderprogramm -
    1000 Fördernummer UID/04516/NOVA
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6525159.rdf
1000 Erstellt am 2025-07-28T10:25:14.700+0200
1000 Erstellt von 355
1000 beschreibt frl:6525159
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-07-29T09:39:06.105+0200
1000 Objekt bearb. Tue Jul 29 09:38:55 CEST 2025
1000 Vgl. frl:6525159
1000 Oai Id
  1. oai:frl.publisso.de:frl:6525159 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source