Download
biomedicines-13-01835.pdf 1,96MB
WeightNameValue
1000 Titel
  • Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
1000 Autor/in
  1. Yang, Ei-Wen |
  2. Waldrup, Brigette |
  3. Velazquez-Villarreal, Enrique |
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-07-28
1000 Erschienen in
1000 Quellenangabe
  • 13(8):1835
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/biomedicines13081835 |
1000 Ergänzendes Material
  • https://www.mdpi.com/article/10.3390/biomedicines13081835/s1. |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND/OBJECTIVES: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. METHODS: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). CONCLUSIONS: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis.
1000 Sacherschließung
lokal artificial intelligence
lokal molecular insights
lokal cancer treatment
lokal RTK-RAS pathway
lokal cancer genetics
lokal AI
lokal AI-agents
lokal large language models
lokal precision medicine
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WWFuZywgRWktV2Vu|https://orcid.org/0009-0009-5991-9779|https://orcid.org/0000-0002-3603-6414
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Department of Integrative Translational Sciences at City of Hope |
  2. National Institutes of Health |
  3. National Cancer Institute |
  4. Optimizing Engagement of Hispanic Colorectal Cancer Patients in Cancer Genomic Characterization Studies |
  5. University of California, Riverside |
  6. Comprehensive Cancer Center, City of Hope |
  7. Drug Development and Capacity Building |
1000 Fördernummer
  1. NIH/NCI P30-CA033572
  2. NIH/NCI P30-CA033572
  3. NIH/NCI U2C-CA252971
  4. NIH, NCI, U54
  5. -
  6. NIH/NCI U54-CA285116
  7. -
1000 Förderprogramm
  1. City of Hope Cancer Control and Population Sciences Program
  2. Cancer Moonshot project
  3. Cancer Moonshot project
  4. -
  5. -
  6. -
  7. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Department of Integrative Translational Sciences at City of Hope |
    1000 Förderprogramm City of Hope Cancer Control and Population Sciences Program
    1000 Fördernummer NIH/NCI P30-CA033572
  2. 1000 joinedFunding-child
    1000 Förderer National Institutes of Health |
    1000 Förderprogramm Cancer Moonshot project
    1000 Fördernummer NIH/NCI P30-CA033572
  3. 1000 joinedFunding-child
    1000 Förderer National Cancer Institute |
    1000 Förderprogramm Cancer Moonshot project
    1000 Fördernummer NIH/NCI U2C-CA252971
  4. 1000 joinedFunding-child
    1000 Förderer Optimizing Engagement of Hispanic Colorectal Cancer Patients in Cancer Genomic Characterization Studies |
    1000 Förderprogramm -
    1000 Fördernummer NIH, NCI, U54
  5. 1000 joinedFunding-child
    1000 Förderer University of California, Riverside |
    1000 Förderprogramm -
    1000 Fördernummer -
  6. 1000 joinedFunding-child
    1000 Förderer Comprehensive Cancer Center, City of Hope |
    1000 Förderprogramm -
    1000 Fördernummer NIH/NCI U54-CA285116
  7. 1000 joinedFunding-child
    1000 Förderer Drug Development and Capacity Building |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6525163.rdf
1000 Erstellt am 2025-07-28T11:18:41.047+0200
1000 Erstellt von 355
1000 beschreibt frl:6525163
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-09-12T15:08:23.014+0200
1000 Objekt bearb. Tue Jul 29 09:41:36 CEST 2025
1000 Vgl. frl:6525163
1000 Oai Id
  1. oai:frl.publisso.de:frl:6525163 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source