Download
ai-06-00170.pdf 2,37MB
WeightNameValue
1000 Titel
  • AppHerb: Language Model for Recommending Traditional Thai Medicine
1000 Autor/in
  1. Piyasawetkul, Thanawat |
  2. Tiyaworanant, Suppachai |
  3. Srisongkram, Tarapong |
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-07-29
1000 Erschienen in
1000 Quellenangabe
  • 6(8):170
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/ai6080170 |
1000 Ergänzendes Material
  • https://www.mdpi.com/article/10.3390/ai6080170/s1 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Trust in Traditional Thai Medicine (TTM) among Thai people has been reduced due to a lack of objective standards and the susceptibility of the general population to false information. The emergence of generative artificial intelligence (Gen AI) has significantly impacted various industries, including traditional medicine. However, previous Gen AI models have primarily focused on prescription generation based on Traditional Chinese Medicine (TCM), leaving TTM unexplored. To address this gap, we propose a novel fast-learning fine-tuned language model fortified with TTM knowledge. We utilized textual data from two TTM textbooks, Wat Ratcha-orasaram Ratchaworawihan (WRO), and Tamra Osot Phra Narai (NR), to fine-tune Unsloth’s Gemma-2 with 9 billion parameters. We developed two specialized TTM tasks: treatment prediction (TrP) and herbal recipe generation (HRG). The TrP and HRG models achieved precision, recall, and F1 scores of 26.54%, 28.14%, and 24.00%, and 32.51%, 24.42%, and 24.84%, respectively. Performance evaluation against TCM-based generative models showed comparable precision, recall, and F1 results with a smaller knowledge corpus. We further addressed the challenges of utilizing Thai, a low-resource and linguistically complex language. Unlike English or Chinese, Thai lacks explicit sentence boundary markers and employs an abugida writing system without spaces between words, complicating text segmentation and generation. These characteristics pose significant difficulties for machine understanding and limit model accuracy. Despite these obstacles, our work establishes a foundation for further development of AI-assisted TTM applications and highlights both the opportunities and challenges in applying language models to traditional medicine knowledge systems in Thai language contexts.
1000 Sacherschließung
lokal artificial intelligence
lokal Low-Rank Adaptation
lokal natural language processing
lokal fine-tuning
lokal traditional Thai medicine
lokal Generative AI
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0001-9471-2433|https://orcid.org/0000-0003-4813-2750|https://orcid.org/0000-0001-8512-5379
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Fund of Khon Kaen University from the National Science, Research, and Innovation Fund or NSRF |
1000 Fördernummer
  1. 68A103000041
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Fund of Khon Kaen University from the National Science, Research, and Innovation Fund or NSRF |
    1000 Förderprogramm -
    1000 Fördernummer 68A103000041
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6525177.rdf
1000 Erstellt am 2025-07-29T10:21:02.416+0200
1000 Erstellt von 355
1000 beschreibt frl:6525177
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2025-08-04T10:00:41.927+0200
1000 Objekt bearb. Mon Aug 04 10:00:31 CEST 2025
1000 Vgl. frl:6525177
1000 Oai Id
  1. oai:frl.publisso.de:frl:6525177 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source