Download
Reichert_2020_J._Neural_Eng._17_056012.pdf 1,63MB
WeightNameValue
1000 Titel
  • Decoding the covert shift of spatial attention from electroencephalographic signals permits reliable control of a brain-computer interface
1000 Autor/in
  1. Reichert, Christoph |
  2. Dürschmid, Stefan |
  3. Bartsch, Mandy Viktoria |
  4. Hopf, Jens-Max |
  5. Heinze, Hans-Jochen |
  6. Hinrichs, Hermann |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-10-07
1000 Erschienen in
1000 Quellenangabe
  • 17(5):056012
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1088/1741-2552/abb692 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • OBJECTIVE: One of the main goals of brain-computer interfaces (BCI) is to restore communication abilities in patients. BCIs often use event-related potentials (ERPs) like the P300 which signals the presence of a target in a stream of stimuli. The P300 and related approaches, however, are inherently limited, as they require many stimulus presentations to obtain a usable control signal. Many approaches depend on gaze-direction to focus the target, which is also not a viable approach in many cases, because eye movements might be impaired in potential users. Here we report on a BCI that avoids both shortcomings by decoding spatial target information, independent of gaze shifts. APPROACH: We present a new method to decode from the electroencephalogram (EEG) covert shifts of attention to one out of four targets simultaneously presented in the left and right visual field. The task is designed to evoke the N2pc component - a hemisphere lateralized response, elicited over the occipital scalp contralateral to the attended target. The decoding approach involves decoding of the N2pc based on data-driven estimation of spatial filters and a correlation measure. MAIN RESULTS: Despite variability of decoding performance across subjects, 22 out of 24 subjects performed well above chance level. Six subjects even exceeded 80% (cross-validated: 89%) correct predictions in a four-class discrimination task. Hence, the single-trial N2pc proves to be a component that allows for reliable BCI control. An offline analysis of the EEG data with respect to their dependence on stimulation time and number of classes demonstrates that the present method is also a workable approach for two-class tasks. SIGNIFICANCE: Our method extends the range of strategies for gaze-independent BCI control. The proposed decoding approach has the potential to be efficient in similar applications intended to decode ERPs.
1000 Sacherschließung
lokal spatial attention
lokal gaze-independent
lokal spatial filter
lokal CCA
lokal BCI
lokal brain-computer interface
lokal N2pc
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8649-9791|https://frl.publisso.de/adhoc/uri/RMO8cnNjaG1pZCwgU3RlZmFu|https://orcid.org/0000-0002-9276-5160|https://orcid.org/0000-0002-5790-9800|https://frl.publisso.de/adhoc/uri/SGVpbnplLCBIYW5zLUpvY2hlbg==|https://frl.publisso.de/adhoc/uri/SGlucmljaHMsIEhlcm1hbm4=
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
1000 Fördernummer
  1. 13GW0095D
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer 13GW0095D
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6423629.rdf
1000 Erstellt am 2020-10-19T11:08:59.879+0200
1000 Erstellt von 242
1000 beschreibt frl:6423629
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-10-20T12:23:29.097+0200
1000 Objekt bearb. Tue Oct 20 12:22:58 CEST 2020
1000 Vgl. frl:6423629
1000 Oai Id
  1. oai:frl.publisso.de:frl:6423629 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source